
long-term interplay between hereditary, genetic, im-
mune, and environmental risk factors. Its pathogenesis 
process is complex and shares various dysfunctional 
pathways with metabolic conditions such as type  
2 diabetes mellitus. Both conditions share specific fea-
tures such as leptin resistance, insulin insufficiency and 
resistance caused by beta-cell dysfunction, and high 
oxidative stress and inflammation in different organs 
(5,6). Furthermore, the consequences of obesity are 
serious. Hormonal and neural signaling disturbances 
can cause cardiovascular diseases (7), increase the risk 
of cancer in multiple organs (8), and alter memory and 
cognitive skills (9-11). 
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Effects of Liraglutide Combined with Normal Fat Diet on 
Neural and Thermogenic Activities of 5’ - AMPK in the 
Hypothalamus 
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Abstract. Background: Medical nutrition therapy is essential in managing and preventing diseases, and 
liraglutide plays a critical role in controlling weight and modulating the effectiveness of 5’ AMP-activated 
protein kinase (5’-AMPK) in the hypothalamus. On the other hand, the neural effects of liraglutide and 5’-
AMPK are negatively altered by a high-fat diet (HFD); in addition to that, it remains unclear how normal-
fat diets combined with liraglutide could counteract the HFD effect. Objectives: To investigate the effects of 
a high-fat versus normal diet on the neural and thermogenic activities of liraglutide and 5’ –AMPK in the 
hypothalamus. Methods: We searched the available literature for studies published in PubMed, Science Direct, 
and ClinicaTrials.gov between November/2020 and January /2021, and we included controlled clinical trials 
based on the animals’ model issued in the past six years. Findings: A total 101 out of 250 articles included 
in our search, and findings revealed that high-fat diets negatively influence liraglutide and 5’-AMPK in the 
hypothalamus. In contrast, a normal-fat diet could reverse this negative influence if combined with a dose of 
1.8-3 mg/kg of liraglutide for up to 16 weeks. Conclusion: High-fat diets counteract the activity of liraglutide 
and 5’-AMPK in controlling food intake and energy hemostasis in the hypothalamus. Furthermore, we didn’t 
find adequate studies examined the effect of combining a normal-fat diet with liraglutide on 5’-AMPK in 
the hypothalamus; hence, our concern was reviewing and predicting the possible effect of normal-fat diets. 

Key words: liraglutide, hypothalamus, 5’-AMP-activated protein kinase, high fat diet, obesity

Background

For years now, obesity has a significant focus as 
a modern health challenge. As a chronic disease, it 
has a notable role in causing many metabolic diseases, 
including diabetes, and inducing neuroinflammation 
(1-3). The prevalence of obesity has dramatically in-
creased in middle-aged individuals by more than 30% 
over the past thirty years. More importantly, females 
and patients with type 2 diabetes are the highest af-
fected groups (3-5). No single factor defines obesity, 
and research supports the theory of multiple facto-
rial dysfunctions where pathogenesis results from a 
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Recently, numerous antidiabetics have been in-
vestigated to evaluate their effect on weight control 
and obesity management. One of the most important 
groups is glucagon-like peptide-1 (GLP-1) agonist. 
Newly, GLP-1 agonists revealed remarkable outcomes 
in reducing nerve cell loss and improving neuron sensi-
tivity to insulin (12,13). Also, GLP-1 agonists dimin-
ish peripheral and central inflammation by decreasing 
interleukin-6 (IL-6) and tumor necrosis factor-alpha 
(TNF-alpha) and increasing the secretion of insulin 
and adiponectin in different organs (14,15). Therefore, 
they are considered neuroprotective medications and 
can be used to manage hypothalamic obesity and neu-
rogenerative diseases.

Liraglutide is a long-acting GLP-1 agonist with 
better control of food intake, weight, insulin, and 
glucagon than other agents. It stimulates both ther-
mogenesis in brown adipose tissue and the brain. It 
stimulates pro-opiomelanocortin neurons/cocaine- 
and amphetamine-regulated transcript (POMC)/ 
CART) in the hypothalamic ventromedial nucleus 
(VMH) while inhibits neuropeptide Y/Agouti-re-
lated protein (NPY/AgRP) neurons and potassium 
ATP channels of the arcuate nucleus resulting in re-
ducing appetite and suppression. Moreover, regarding 
effects on gastrointestinal activity, liraglutide sup-
presses hedonic feeding behaviors via slowing gastric 
emptying and reducing apolipoprotein C-III expres-
sion (16-21).

5’-AMP-activated protein kinase (5’ -AMPK) is 
one of the most important kinases for energy regula-
tion peripherally and in the central nervous system. 
It regulates the sympathetic system activity in brown 
and white adipocytes and the thermogenesis process 
in different brain regions, particularly in the ventro-
medial nucleus hypothalamus 22. On the other hand, 
any reduction in 5’ -AMPK levels or activity in periph-
eral tissues such as the liver and adipose tissue would 
mainly cause glucose intolerance, diabetes, and obesity 
(23,24).

Liraglutide modulates the activity of 5’ -AMPK 
in the central nervous system and peripheral or-
gans by activating the phosphatidylinositol 3-kinase 
(PI3K)/protein kinase B pathway. This modulation 
changes autophagy in cells affected by high glucose 
levels, inhibits tumor proliferation factors, stimulates 

lipids oxidation, and upregulates insulin signaling, in 
which liraglutide playing a role in reducing weight and 
inflammation (25-28).

Studies have recently shown that chronic con-
sumption of a high-fat diet (HFD) (>40% kcal) could 
cause glucotoxicity and lipotoxicity in pancreatic cells, 
leading to many metabolic dysfunctions. It has been 
recognized that HFD alters many metabolic path-
ways, including gut-brain communication, satiety, 
leptin, and insulin signaling. HFD reduces the activ-
ity of GLP-1 receptors and hindbrain GLP-1 receptor 
expression, consequently limiting the acute anorexic 
response to liraglutide and increases food intake and 
weight. Moreover, it could increase lipid oxidation and 
lower the 5’-AMPK’s peripheral activity by up to 50% 
(29,30).

To our concern, obesity and related metabolic 
diseases oblige enormous nutritional and medi-
cal challenges in different medical sectors. The ef-
fect of HFD on the activity of liraglutide and 
5’-AMPK in human peripheral tissues, such as 
adipose tissue and muscles, is obvious. However, 
liraglutide reduces insulin resistance and decreases 
lipid profile values in blood, even with fat diets 
supplying 60-80% of total daily calories. It en-
hances autophagy, increases glucose transporter  
1 (GLUT 1), and increases 5’ -AMPK phospho-
rylation in muscles by 50% (31,32). Our concern 
in search directed toward investigating the effects 
of combining high or normal fat diets with lira-
glutide on neural activity 5’ -AMPK in the human 
hypothalamus.

Material and method 

Protocol, Search Strategy and Data Sources

This present review’s relevant data were col-
lected by searching literature published in PubMed, 
Science Direct, and ClinicaTrials.gov between 
November/2020 and January /2021. The research 
terms included: liraglutide, GLP-1 agonist, hypo-
thalamus, Brain, Neuroprotective, 5’ –AMPK, ther-
mogenesis, and low to normal fat diet, high fat diet, 
and obesity.
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Selection of published studies (Inclusion/ Exclusion 
criteria) 

The main inclusion criteria were published clini-
cal trials and cross-over designs investigating the ef-
fects of high and normal-fat diets and liraglutide on 
5’ -AMPK neural and thermogenic activity, mainly in 
the hypothalamus other brain regions of animal mod-
els. Selected full-text articles of preclinical and clinical 
studies that have been published within 5-6 years were 
included, and references from included original pa-
pers were reviewed to identify further eligible studies. 
Based on the research strategy, 101 appropriate articles 
were selected from around 240 articles that were in-
vestigated. Selected articles were categorized in main 
headings “Effects of High-Fat Diet, Liraglutide on the 
Neural Activity of 5’ –AMPK in Hypothalamus, and 
Other Brain Regions”, “Effects of HFD, Liraglutide 
on the Thermogenic Activity of 5’ –AMPK in Hypo-
thalamus, and Other Brain Regions”, and “Effect of 
Adding Normal-Fat diet to Liraglutide regimen on 5’ 
–AMPK Activity in Hypothalamus and Other Brain 
Regions.

After the final screening, 21 articles were ex-
cluded for specific reasons, including study design (n = 
8), insufficient information (n= 4), cells and tissue cul-
turing (n=2), liraglutide is used in combination with 
other antidiabetic drugs (n=5), no comparison group 
included in the trial (n = 2). The exclusion criteria were 
non-English language studies, abstracts, conference 
proceedings, letters, case reports, and clinical trials 
published over six years. On the other hand, Clinical-
Trials.gov was searched for ongoing registered clinical 
trials, and inclusion and exclusion criteria were identi-
cal to selecting published studies.

Data Collection 

Findings were extracted from articles by one re-
searcher and independently checked for accuracy by 
two supervisors. Data summarized in one table which 
was divided into a group of columns entitled as follow: 
study material, study samples, brain tissue locations, a 
summary of results and mechanisms describe the ef-
fects of liraglutide and HFD on the neural and ther-
mogenic activity of 5’ –AMPK in the hypothalamus 

and other brain regions, authors, and final year of 
publication. Data regarding the effect of a normal-fat 
diet on liraglutide activity was summarized in a figure 
titled: Summary for the effects of GLP-1 agonist (lira-
glutide) with normal-fat diet on the neural and ther-
mogenic activity of 5’ –AMPK.

Effects of High-Fat Diet, Liraglutide on the Neural 
Activity of 5’ –AMPK in Hypothalamus, and Other 
Brain Regions 

Food intake and energy hemostasis are physiolog-
ically well balanced.  Hemostasis is regulated through 
complicated neural pathways, including peripheral-
central-hormonal activities (33) that control specific 
neurons in different brain regions such as the hypo-
thalamus, brain stem, cortico-limbic system, amygdala, 
basal ganglia, and frontal- partial lopes. HFD of 60% 
disrupts the vagal signaling of several gastrointesti-
nal hormones such as cholecystokinin and serotonin 
(34-36). This disruption causes changes in normal gas-
trointestinal flora, thus suppressing GLP-1 hormone 
secretion from enteroendocrine cells. Also, It nega-
tively correlates to gut permeability and inflammation 
resulting in early insulin and leptin resistance in vagal 
nerves with high hyperphagia and negative conse-
quences (37,38). 

Additionally, a HFD contributes to peripheral 
and central neuroinflammation via impairing the 
phosphorylation of 5’–AMPK, mitogen-activated 
protein, and extracellular signal-regulated kinases, 
in which all rise energy intake behavior in the hypo-
thalamus and brain (39-41). Generally, fat diets can 
increase thiobarbituric acid reactive substances that 
indicate lipid peroxidation and lower brain eicosapen-
taenoic acid. Most recent studies revealed that high-
fat diets activate glial cells, including microglia and 
astrocytes in the hypothalamus and hippocampus, and 
decrease the serotonin and glutamate-glutamine ratio 
in the hippocampus leading to cognitive decline, de-
mentia, and neurodegenerative disorders (39,42-44).  
Changes in feeding behavior in individuals with 
obesity induced by a HFD are another negative is-
sue mainly accompanied by oxidative stress and mi-
tochondrial dysfunction in the brain cortex. This 
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dysfunction causes disturbances in energy balance, 
and reducing brain-derived neurotrophic levels, which 
is a major contributor to brain plasticity and reduced 
levels, leads to depression (45).

The American Diabetic Association recom-
mends choosing glucose-lowering medications for 
overweight or obese patients with type 2 diabetes 
based on their impact on weight control and obesity 
management (46). Besides GLP-1 agonist (Lira-
glutide) positive action on insulin secretion with 
minimal hypoglycemic effect, it has newly show anti-
appetite, anti-inflammatory, neuroprotection, and 
anti-apoptosis activities (47). Peripherally, GLP-1 
agonist, particularly in liver and adipocytes, decreases 
the liver’s triglyceride synthesis, reduces adipocyte 
size in visceral regions and in some subcutaneous, 
and increases fatty acid β-Oxidation in the skeletal 
muscle. At the same time, it delays gastric emptying 
rate and gut transit time in the gastrointestinal tract, 
thus reducing food absorption, and positively modu-
lates the composition of the gut microbiota, which 
plays an important role in immunity and inflamma-
tion (48-50).

Liraglutide controls the expression of 5’–AMPK 
in the hypothalamus and other regions in the brain. It 
inhibits phosphorylation of 5’–AMPK in the nucleus 
tractus solitarius and stimulates a mitogen-activated 
protein kinase. Thus, it suppresses food intake and re-
duces the high intake of glucose into the lateral hypo-
thalamus, while in skeletal muscles, it decreases ectopic 
intramyocellular fat deposition (28,51). Furthermore, 
liraglutide has a good influence on short and long-
term appetite regulation in primary controlling neural 
regions, including the partial cortex, medulla oblon-
gata. It induces neuroprotection via stimulation of au-
tophagy and the transcription factor forkhead box-O3 
(p-FOXO3) expression in spinal neurons (2,12).

Interestingly, long-term administration of lira-
glutide enhances AMP kinase/ peroxisome prolif-
erator-activated receptor-γ coactivator 1a signaling, 
responsible for fatty acid oxidation and regulation of 
mitochondrial function (52).

Endogenous GLP-1 hormone has a short du-
ration of activity. It is rapidly degraded after se-
creted from the nucleus tractus solitarius, and this 

decreases proglucagon-derived peptides (PGDPs) 
levels which is essential for glucose regulation and 
food reward behavior, and hypophagia. Thus, any 
reduction in (PGDPs) levels will further decrease 
circulating levels of GLP-1, impaired glucose home-
ostasis, and aggravate food reward behavior (53-55).
In comparison, liraglutide inhibits food motivation 
by 30 %. (51) 

Compared to endogenous GLP-1, long-duration 
agonists such as liraglutide have a more prolonged ef-
fect by crossing the blood-brain barrier. In the brain, 
nuclei and receptors affected are the periventricular 
and lateral hypothalamus, medial nucleus tractus soli-
tarius, melanocortin 3/4 receptors in the hindbrain, 
and the hippocampus (56-58). 

Recently, research has revealed that liraglutide 
reduces neuroinflammation in the hypothalamus and 
hippocampus induced by a HFD, and its effect is 
significant with diets that contain fatty-acid such as 
palmitate (59,60). Also, it is promoting learning and 
memory functions in the hippocampus in health and 
traumatic injury (61). Recently a study showed that an 
injection of GLP-1 agonist directly into the arcuate 
nucleus could reduce hepatic glucose production and 
glucose uptake by cells, especially neurons (62). Fur-
thermore, Long-term administration of intrahypotha-
lamic liraglutide could enhance the phosphorylation 
serine S845 postsynaptic glutamatergic receptors, thus 
controlling appetite, food intake, and reducing body 
weight 8% (22,63,64).

In the hippocampus, liraglutide regulates the ca-
pacity of gamma-aminobutyric acid (GABA) signaling 
of cornu ammonis pyramidal neurons; thus, it helps in 
activating memory and learning (65). Moreover, lira-
glutide activates the cyclic adenosine monophosphate 
response element-binding protein (cAMP/PKA/
CREB) pathway in astrocytes. Its anti-inflammatory 
activity due to activation of (cAMP/PKA/CREB) 
pathway prevents the lipopolysaccharide-induced re-
lease of interleukin-1β and promotes anti-inflamma-
tory cytokines, such as interleukin-10 (IL-10). Indeed, 
it reduces oxidative stress, glutamate excitatory toxicity 
induced cell death in neurons and enhances the fre-
quency of spontaneous excitatory postsynaptic cur-
rents (47,66).



Progress in Nutrition 2022; Vol. 24, N. 1: e2022003 5

hypothalamic Glp1recepter expression, and activates 
systems that have an important role in regulating en-
ergy homeostasis (63,77).

Worth mentioning that the activation of GLP-1 
receptors by liraglutide in the lateral hypothalamus 
activates orexin. This neuropeptide regulates sleep 
and appetite, modulates 5’–AMPK activity, stimu-
lates brown and white adipose tissue thermogenesis, 
and significantly increases uncoupled proteins 1&3 
that produce more thermal energy production in adi-
pocytes (16). Furthermore, liraglutide induces white 
adipose tissue browning via upregulating soluble gua-
nylyl cyclase and protein kinase G (50,77,78). Recent 
investigations showed that treating obese individuals 
with liraglutide (3 mg daily) for five or more weeks 
could decrease glucose and energy intake and carbo-
hydrate oxidation. A 30 nmol/kg/day concentration 
of liraglutide in blood could activate white adipocytes’ 
browning, increase energy expenditure, and activate 
the 5’–AMPK energy expenditure in the liver and 
adipocytes. On the other hand, a HFD counteracts 
all previous effects and decreases energy expenditure 
(59,70,80).

Additionally, resting energy expenditure for obese 
patients can be decreased within 12 weeks if liraglutide 
is combined with lower daily energy intake or low ca-
loric diets (81). The efficacy appears to be more when 
the medication is administered intra-hypothalamic 
rather than subcutaneous. At the immune level, lira-
glutide increases the expression of invariant natural 
killer T cells, which increases fibroblast growth factor 
21 (FGF21) and induces thermogenic browning of 
white fat. Finally, it could inhibit the migration of hu-
man lymphocytes and prevent the recruitment of pro-
inflammatory macrophages in tissues, thus reducing 
inflammation and its cosequances (72,82). Therefore, 
liraglutide could be a potential anti-inflammatory ef-
fect and can be used not only for obesity treatment but 
also for prevention at subclinical levels.

High-fat diets induce cytokines’ secretion, such 
as nitric oxide and tumor necrosis factor, which inter-
fere with insulin signaling in adipocytes, and increase 
glucose uptake resulting in adipocyte dysfunction and 
insulin resistance (83). Furthermore, a HFD alters the 
hypothalamic function and cellular proteins involved 

Effects of High-Fat Diet, Liraglutide on 
the Thermogenic Activity of 5’ –AMPK in 
Hypothalamus, and Other Brain Regions.

5’–AMPK a good metabolic sensor that regulates 
caloric intake in different peripheral organs such as the 
liver, adipocytes, and muscles. In the central nervous 
system, it selectively chooses between carbohydrates 
or fat metabolism in the paraventricular hypothala-
mus (67,68), and any changes in sympathetic firing 
to brown and white adipocytes could negatively alter 
thermogenesis activity of 5’–AMPK. Lately, it has 
been observed that the administration of thyroxine 
could reverse this alteration (69,70). Other mecha-
nisms in which 5’–AMPK controls adaptive thermo-
genesis, food intake, and autophagy include activation 
of corticotropin-releasing hormone, releasing neu-
ropeptides such as α-melanocyte-stimulating hor-
mone, and agouti-related-peptide expressing neurons 
(AgRP) that all increase sympathetic tone to adipose 
tissue (24,68,71).

The loss of GLP-1 receptors on the dorsomedial 
hypothalamic nucleus cell membrane due to obesity 
diminishes brown adipocyte thermogenesis activity, 
decreases the activity of GLP-1 agonist, and increases 
adiposity (72,73). As early mentioned, liraglutide stim-
ulates POMC/CART neurons while inhibits GABA 
transmission in neurons, and this regulates energy 
signals homeostasis and thermogenesis activity of 5’–
AMPK in the central nervous system and peripheral 
tissues(74). Liraglutide provokes weight loss through-
out various molecular mechanisms starting from the 
controlling enzymes and kinases of the hypothalamic 
ventromedial and the paraventricular hypothalamus, 
which regulate thermogenic browning of white adi-
pocytes (16,72,74). Also, liraglutide could change the 
activity of the 5’–AMPK by inducing the expression 
of uncoupled protein 1 (UCP1) in brown adipocytes. 
It inhibits ghrelin-stimulated neuronal signals, reduc-
ing food intake, and interacts with 5’–AMPK activity 
on orexigenic action of ghrelin16. Furthermore, it de-
creases mitogen-activated protein kinase (MAPK) ac-
tivation and modulates intestinal intra-inflammatory 
lymphocytes (75). In conclusion, liraglutide is an effec-
tive antidiabetic used in weight control (76), increases 
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in neurogenesis, synaptogenesis and causes hypotha-
lamic astrocytosis and microgliosis in the hypothala-
mus, responsible for many neurodegenerative diseases 
and energy metabolism disturbances (84,85).

Besides, it increases expression of phosphodies-
terase 4A5 and its phosphorylation activation process 
which suppresses the cAMP/PKA pathway, results in 
sort of a depression behavior, inflammation induced by 
lipopolysaccharide (LPS), and reverses the excitatory 
effects of orexin and melanin in neuron (86-88).

Effect of Adding Normal-Fat diet to Liraglutide 
regimen on 5’ –AMPK Activity in Hypothalamus 
and Other Brain Regions.

Some human studies revealed that although low-
carbohydrate diets are popular for weight loss, fat diets 
containing 30% of fat or less share comparable results 
with low carbohydrate diets on weight loss and hemo-
globin parameters A1c (HbA1c) (89,90). Given what 

was previously discussed regarding the importance of 
liraglutide in controlling obesity, and the adverse ef-
fects of a HFD on the nervous system on the action 
of hypothalamic enzymes, especially 5’–AMPK and 
its activity on thermogenesis and neural activity, it is 
expected that normal-fat diets can play the role of im-
proved contrast. Some clinical studies have discussed 
the role of a normal-fat diet, but unfortunately, re-
search has focused only on the effects of HFD or lira-
glutide’s effectiveness as a drug; thus, scrutiny in this 
area is still available, and more research could open the 
gate for greater understanding.

A dose of 1.0-1.8 mg/kg of liraglutide with a 
normal-fat diet promotes weight loss (91,93), induces 
a reduction in overall caloric intake (91,94). Liraglutide 
could reduce visceral adipose tissue by 15.3% (95), and a 
normal-fat diet helps to improve b-cell function and en-
hance insulin sensitivity (96). As the negative effect of a 
HFD on 5’–AMPK in brain regions and other body tis-
sues has been clarified in previous sections, specific posi-
tive effects of using a normal-fat diet could be expected.

Figure 1. Summary for the effects of glucagon-like peptide-1 agonist (liraglutide) with low-fat diet on the neural and thermogenic 
Activity of AMPK
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controls food intake; in conclusion, liraglutide may in-
hibit the motivation for food by 30 %

Conclusion

Many antidiabetic agents are being used in obesity 
management. Liraglutide activates neural centers in the 
hypothalamus and hindbrain and controls appetite and 
food intake. 5-AMPK stimulates energy production in 
peripheral tissues, improves metabolic status, and mod-
ulates uncoupled proteins. On the other hand, HFD 
counteracts all previously mentioned effects. Through 
the literature, no adequate studies showed the effect of 
a low to normal-fat diet on liraglutide and 5-AMPK in 
the brain, so our concern was to review the possible ac-
tion of normal-fat diets on the activity of liraglutide on 
hypothalamic 5-AMPK. Low to normal-fat diets with 
30% could enhance liraglutide activity on 5-AMPK, 
metabolism processes such as glycogen and fatty acids 
synthesis, increasing thermogenesis and expression of 
UCP1, and reducing side effects of liraglutide using a 
lower dose combined with a normal-fat diet regimen.
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