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Summary
Polyunsaturated fatty acids (PUFA) can affect gene expression through
changes in membrane composition and signalling, eicosanoid production,
oxidant stress, nuclear receptor activation or covalent modification of spe-
cific transcription factors. This paper considers the effects of marine n-3
PUFA on expression of genes involved in various pathways and in brain
and liver. Increasing the n-3 PUFA content of the diet of rats induces
changes in the expression of more than 100 genes in the brain, involved in
synaptic plasticity, cytoskeleton, signal transduction, ion channel forma-
tion, energy metabolism and regulatory proteins. Further work has revea-
led an interaction between zinc and docosahexaenoic acid (DHA) in brain
(in vivo & in vitro). In the liver, studies suggest that marine n-3 PUFA are
involved in the suppression of glycolytic and lipogenic genes, and as acti-
vators of fatty acid oxidation at the level of gene expression to control mi-
tochondrial and peroxisomal lipid metabolism.

Riassunto
Gli acidi grassi polinsaturi (PUFA) possono influenzare l’espressione ge-
nica modificando la composizione di membrana e la trasmissione del se-
gnale: produzione di eicosanoidi, stress ossidativo, attivazione di recettori
nucleari, modifica covalente di specifici fattori di trascrizione. Questo stu-
dio considera gli effetti di n-3 PUFA di origine marina sull’espressione di
geni coinvolti nei diversi pathways, nel cervello e nel fegato. Aumentare il
contenuto di n-3 PUFA nella dieta dei ratti induce cambiamenti nell’e-
spressione di oltre 100 geni nel cervello, coinvolti nella plasticità sinaptica,
citoscheletro, trasduzione del segnale, formazione di canali ionici, metabo-
lismo energetico e proteine regolatrici. Ulteriori studi hanno rivelato una
interazione tra zinco e acido docosaesaenoico (DHA) nel cervello (in vivo
e in vitro). Nel fegato, gli studi suggeriscono che n-3 PUFA di origine
marina sono coinvolti nella sopressione della lipogenesi, e come attivatori
dell’ossidazione di acidi grassi a livello di espressione genica nel controllo
del metabolismo lipidico mitocondriale e perossisomiale.
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Introduction

Fatty acids are energy rich mole-
cules that play important metabo-
lic roles. Fatty acids can be catego-
rised into three groups depending
on the number of double bonds
namely: saturated, mono unsatura-
ted and polyunsaturated fatty
acids (PUFA). Alpha-linolenic
acid (ALA) (n-3) is an essential
PUFA which can be metabolized
in vivo by desaturation and elon-
gation enzymes to form a series of
long chain more unsaturated n-3
PUFA. The major products of this
pathway are eicosapentaenoic acid
(EPA), docosapentaenoic acid
(DPA) and docosahexaenoic acid,
(DHA) (1). Fatty acids, especially
n-3 PUFA, have been implicated
in modulation of various bioche-
mical pathways including the abi-
lity to affect gene expression. PU-
FA are known to regulate the gene
expression in various cell types like
liver (2), adipose (3), muscle (4),
brain (5), heart (6) and colon (7).
In rodents, PUFA rich diets re-
press various lipogenic genes and
increase the expression of genes
involved in beta-oxidation (2, 8-
10). It is believed that PUFA can
potentially affect gene expression
through changes in membrane
composition and signalling, eico-
sanoid production, oxidant stress,
nuclear receptor activation or co-
valent modification of specific
transcription factors. This report

will review the effects of marine
n-3 PUFA on expression of genes
involved in various pathways in
brain and liver. It was initially
thought that fatty acids affect cel-
lular metabolism solely through
indirect mechanisms such as chan-
ging membrane phospholipid con-
centrations or producing signal-
ling intermediates like eicosa-
noids. However, actions of fatty
acids on gene expression occur wi-
thin hours of feeding animals diets
rich in PUFA suggesting a more
direct mode of action. The disco-
very of Gottlicher et al of nuclear
receptors capable of binding fatty
acids to modulate gene expression
established a direct role for fatty
acids at nuclear level (11). The
main receptors that interact with
PUFA to regulate gene expression
are peroxisome proliferator-activa-
ted receptor (PPAR), liver X re-
ceptor (LXR) and Hepatic nuclear
factor - 4α (HNF-4α). PUFA also
regulate gene expression by regu-
lating the transcription factors like
sterol regulatory element binding
protein (SREBP) and carbohydra-
te response element binding pro-
tein (ChREBP) (12).
The brain is a lipid rich organ, in-
fact it has the second highest con-
centration of lipids in body after
adipose. Brain phosphoglycerides
are rich in DHA and arachidonic
acid (AA) and contain smaller
proportions of DPA and docosate-
traenoic acid (n-6) (13). The n-3

PUFA regulate the expression of
several genes in brain. Kitajaka et
al reported that rats fed throu-
ghout their life with either a vege-
table oil (rich in ALA) or fish oil
containing EPA, DPA and DHA
showed alterations in approxima-
tely 100 genes in brain, 55 of
which were upregulated and 47
were down-regulated, relative to
control rats (14). The genes alte-
red were mainly involved in
synaptic plasticity, cytoskeleton,
signal transduction, ion channel
formation, energy metabolism and
regulatory proteins. They also
found that diets rich in n-3 PUFA
(ALA and the marine n-3 PUFA)
significantly affected neural
energy metabolism and ATP of
gene expression. In a separate ex-
periment they observed that genes
encoding for alpha- and gamma-
synuclein were over expressed in
young rats fed with fish oil (mari-
ne n-3 PUFA) for one month (15,
16). Synucleins are associated with
synaptosomes and play a role in
neural plasticity and learning.
Many mood disorders like neu-
roinflammation and depression are
associated with excessive produc-
tion of cytokines like IL-1beta,
IL-12, IL-6 and TNF-α as well as
chemokines like vascular cell ad-
hesion molecule-1 (VCAM-1)
and intracellular cell adhesion mo-
lecule – 1 (ICAM) (for review see
(13, 17)). Furthermore, the mari-
ne n-3 PUFA are well known to
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inhibit the expression of these
cytokines, via effects in reducing
the production of proinflamma-
tory prostaglandins (PGE2) and
leukotrienes (LTB4) (18, 19).
Brain derived neurotropic factor
(BNDF) is a potent trophic factor
which combined with PGE2 re-
gulates the synaptic plasticity and
induces long-term potentiation. It
has been reported that feeding rats
with n-3 PUFA deficient diet al-
ters the expression of BNDF,
cyclic AMP response element bin-
ding protein (CREB) and p38 mi-
togen activated protein kinase
(MAPK) expression and activity
(20). In contrast, feeding marine
n-3 PUFA normalizes BDNF le-
vels that are reduced with brain
injury (20).
Marine n-3 PUFA also regulate
the expression of zinc transporters
(ZnT) in brain. Zinc is regarded
as an important nutrient because
it plays an essential role in biologi-
cal systems as catalytic or structu-
ral cofactor in numerous zinc-de-
pendent enzymes, in signal trans-
duction and as component of
transcription factors. The uptake
of Zn from extracellular environ-
ment to cytoplasm is mediated by
ZnT. Jayasooriya et al reported
that the expression of ZnT3 is
upregulated in rats raised on n-3
PUFA deficient diet, compared
with rats given n-3 sufficient diets
(21). It was also observed that the-
re was a decrease in plasma zinc

levels and increase in brain zinc
levels. The results suggest that
over expression of ZnT3 due to a
perinatal omega-3 PUFA defi-
ciency caused abnormal zinc me-
tabolism in the brain. Neuronal
zinc is reported to be involved in
the formation of amyloid plaques
which is character of AD during
adulthood. Also low plasma levels
of Zn have been associated with
incidence of AD in humans. Thus,
the influence of dietary omega-3
PUFA on brain zinc metabolism
could explain the observation ma-
de in population studies that the
consumption of fish is associated
with a reduced risk of dementia
and Alzheimer’s disease (21). It
has been recently shown that zinc
and DHA have opposing effects
on the expression levels of histo-
nes H3 and H4 in human neuro-
nal cells. Both histones were
downregulated by Zn in the ab-
sence of DHA (Zn effect) and
upregulated by DHA (DHA ef-
fect) in the presence of Zn
(physiological condition). Such
novel information provides possi-
ble clues to the molecular basis of
the opposing effects of zinc and
DHA on neuroprotection (22).
The liver plays a central role in
whole body lipid metabolism and
dietary fat has significant impact
on hepatic lipid metabolism. Stu-
dies on primary hepatocytes have
revealed several major metabolic
pathways that are targeted by PU-

FA in liver. Each pathway involves
changes in gene expression. First,
n-3 PUFA induction of microso-
mal and β-oxidation (mitochon-
drial and peroxisomal) requires
PPARα (23). Second, PUFA sup-
pression of glycolitic and lipogenic
genes like liver pyruvate kinase
and fatty acid synthase involves
three transcription factors,
SREBP-1, ChREBP and MLX
(24-26). Third, PUFA suppression
of the glycolytic enzyme, l-pyru-
vate kinase, does not involve PPA-
Rα, SREBP-1 or LXRα (27-29),
but involves ChREBP and MLX
heterodimer (24, 25, 30). Fourth,
PUFA suppression of PUFA
synthesis lowers levels of fatty acid
elongase-5 (Elovl-5), ∆5desaturase
(∆ 5D) and ∆ 6desaturase (∆ 6D).
PUFA control of SREBP-1 nu-
clear abundance explains part of
this mechanism (24, 30, 31). The-
se studies suggest that n-3 PUFA
function as feed-forward activa-
tors of fatty acid oxidation at the
level of gene expression to control
mitochondrial and peroxisomal li-
pid metabolism. Marine n-3 PU-
FA are also reported to increase
the mean size of mitochondria as
well as increase the expression of
genes involved in fatty acid oxida-
tion like CPT-II (32) and UCP-2
(23) in hepatocytes. Marine n-3
PUFA also function as feedback
inhibitors of glycolysis, de novo li-
pogenesis, mono- and polyunsatu-
rated fatty acid synthesis to con-
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trol the production and cellular
content of saturated, mono- and
polyunsaturated fatty acids. These
regulatory schemes not only redu-
ce overall hepatic lipid content
and VLDL secretion, but may also
eliminate excessive marine n-3
PUFA that may promote oxidant
stress or impair membrane inte-
grity (33).
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