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Abstract

Introduction. The COVID-19 pandemic had a profound impact on vaccines’ Research and Development, on vaccines’ market,
and on immunization programmes and policies. The need to promptly respond to the health emergency boostered resources’ al-
location and innovation, while new technologies were made available. Regulatory procedures were revised and expedited, and
global production and distribution capacities significantly increased. Aim of this review is to outline the trajectory of research in
vaccinology and vaccines’ pipeline, highlighting major challenges and opportunities, and projecting future perspectives in vaccine
preventables diseases’ prevention and control.

Study Design. Narrative review.

Methods. We comprehensively consulted key biomedical databases including “Medline” and “Embase”, preprint platforms,
including”MedRxiv” and “BioRxiv”, clinical trial registries, selected grey literature sources and scientific reports. Further data
and insights were collected from experts in the field. We first reflect on the impact that the COVID-19 had on vaccines’ Research and
Development, regulatory frameworks, and market, we then present updated figures of vaccines pipeline, by different technologies,
comparatively highlighting advantages and disadvantages. We conclude summarizing future perspectives in vaccines’ development
and immunizations strategies, outlining key challenges, knowledge gaps and opportunities for prevention strategies.

Results. COVID-19 vaccines’ development has been largely supported by public funding. New technologies and expetited autho-
rization and distribution processes allowed to control the pandemic, leading vaccines’ market to grow exponentially. In the post-
pandemic era investments in prevention are projected to decrease but advancements in technology offer great potential to future
immunization strategies. As of 2023, the vaccine pipeline include almost 1,000 candidates, at different Research and Development
phase, including innovative recombinant protein vaccines, nucleic acid vaccines and viral vector vaccines. Vaccines’ technology
platforms development varies by disease. Overall, vaccinology is progressing towards increasingly safe and effective products
that are easily manufacturable and swiftly convertible.
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Conclusions. Vaccine research is rapidly evolving, emerging technologies and new immunization models offer public health new
tools and large potential to fight vaccines preventables diseases, with promising new platforms and broadened target populations.
Real-life data analysis and operational research is needed to evaluate how such potential is exploited in public health practice to

improve population health.

Introduction

The COVID-19 pandemic has propelled vaccine
research into an unprecedented era of challenges and
opportunities, sparking a global initiative to swiftly
develop, produce, and distribute effective vaccines.
The health emergency underscored the critical need
to expedite advancements in scientific frontiers,
accelerating efforts to find innovative preventive
solutions. The emergence of SARS-CoV-2 has triggered
a race against time within the scientific community,
driving the development and manufacturing of new
vaccine platforms. The substantial increase in both
public and private investments in vaccine research
has reshaped the scientific landscape, resulting in a
significant overhaul of processes and authorization
procedures. Notably, the adoption of practices like
the rolling reviews contributed to expedite vaccine
approval while upholding stringent safety and efficacy
standards (1). Engagement from various stakeholders,
including governments, academic institutions,
pharmaceutical companies, and international
organizations, has fostered extensive collaboration
in Research and Development (R&D), together with
an unprecedented sharing of knowledge. Regulatory
authorities have intensified their involvement and
interaction with sponsors, governments had to re-
evaluate the importance of their preparedness for
pandemics, leading them to prioritize investments
and seek ways to accelerate the development of new
medicines. Companies have also reconsidered the
structure of their R&D initiatives, focusing on primary
outcomes rather than burdening trials with secondary
endpoints and evaluations. Additionally, they have re-
assessed the approaches used in conducting clinical
trials, including the application of predictive modeling
for the selection of trial sites (2).

Regulatory frameworks

The global pandemic triggered a paradigm shift in
international regulatory mechanisms, notably through
the implementation of innovative approaches. In

Europe, the use of rolling reviews enabled researchers
to continuously submit data throughout multiple
review cycles as it became accessible, preceding the
formal application submission. This approach actually
departed from the traditional approval pathway, where
all data undergoes assessment at the conclusion of
clinical trials. Adopted by several health authorities
worldwide during the pandemic (3), rolling reviews
allowed regulators to continuously evaluate emerging
data, expediting the assessment and potential approval
of vaccines by expediting the review process (4).
In the United States, this approach was not an
independent procedure, but rather considered a facet
linked to the “Fast Track Designation” under the
Food and Drug Administration (FDA) guidance (5).
Furthermore, the urgency to address the pandemic
prompted regulatory agencies to implement expedited
Marketing Authorizations (MAs), such as the EMA’s
Conditional Marketing Authorization (CMA) and the
FDA'’s Accelerated Approval (6). MAs facilitated the
provisional endorsement of vaccines using interim
data, conditional upon meeting specific criteria
to ensure their safety, effectiveness, and ongoing
monitoring. Innovative pragmatic approaches swept
vaccine deployment while ensuring continuous
evaluation and data gathering post-endorsement to
address an unmet medical need (1).

The impact of the COVID-19 pandemic on vaccine
global market: manufacturing, volumes, Research
and Development

With the introduction of COVID-19 vaccines,
the global production of vaccine doses experienced
a significant surge, rising from 5.8 billion doses in
2019 to 16 billion doses in 2021 (7). COVID-19
vaccine doses alone accounted for 67% of the global
volume in 2021 (7). This unprecedented increase in
production had a substantial economic impact. The
costs associated with manufacturing and distributing
vaccines soared alongside global distribution,
prompting a pivotal shift in R&D expenditure. In
2021, the estimated global investments dedicated
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to vaccine development saw a substantial increase,
rising from approximately 1 billion to 13 billion
dollars (8). Furthermore, the production timelines
significantly changed: before COVID-19, the average
duration from initial Phase I clinical testing to final
product approval spanned over nearly a decade. This
sharply contrasted with the development timelines of
COVID-19 vaccines, completed in less than a year
(3). For instance, certain clinical development phases
were initiated before the preceding phases had been
entirely concluded (2).

Who provides funding?

In pandemic times, substantial investments were
facilitated by various funding sources. Before the
pandemic, basic vaccine research and early-stage
development often received support from the public
sector (9). Throughout the pandemic, an unparalleled
amount of resources was allocated to finance clinical
trials, expand manufacturing capabilities, and
establish Advance Purchase Agreements (APAs). A
study requested by the European Parliament’s Policy
Department for Economic, Scientific and Quality of
Life Policies reported that governments, primarily
the US (with some not-for-profit entities), massively
supported corporate investments, either for R&D,
manufacturing, or both, by nearly EUR 9 billion.
Governments and other public entities constituted more
than 80% of the overall external funds identified. Their
support was provided through grants and loans (10).
The substantial investments from the public sector,
combined with remarkable collaborative initiatives by
regulatory bodies, enabled manufacturers to develop
vaccines within a 10-month period and simultaneously
expand manufacturing capabilities.

Progress and sustainability

Enterprising companies ventured into risk-based
investments to support the development of COVID-19
vaccines, a conventional approach in drug development
that was unprecedentedly expanded during the crisis
(2). Despite the substantial growth in the global vaccine
market size due to COVID-19, it is expected that this
impact will wane by 2024, with the projected vaccine
market size returning to pre-pandemic estimates
(11). The resolution of the pandemic crisis and the
subsequent departure from emergency regulatory
measures and significant public funding will require
a more cautious approach to vaccine R&D within
companies. This transition calls for a recalibration
towards sustainable financial practices. While the
extraordinary public funding during the pandemic
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facilitated swift progress in vaccine development
and other medical interventions, companies are now
faced with the imperative of establishing a sustainable
financial framework for future R&D initiatives. The
conclusion of emergency regulatory mechanisms
indicates a need for companies to exercise caution
and prudence in their R&D pursuits, giving priority to
long-term financial sustainability over rapid, resource-
intensive breakthroughs. This transition emphasizes
the importance of striking a strategic balance between
innovation and fiscal responsibility, promoting a
renewed focus on cost-effectiveness, efficient resource
allocation, and the pursuit of R&D projects that ensure
sustained viability and societal benefit in the post-
pandemic landscape.

Aim

Within a realm characterized by the rapid pace of
scientific advancements and collaborative endeavors,
this article explores the evolving perspectives of
vaccine R&D. It carefully examines technological
progress and assesses the transformative impact of
COVID-19 on the trajectory of vaccinology. Our
review aims to capture the current landscape of
vaccine R&D; this entails mapping its pathways
and delineating the current vaccine pipeline, which
integrates both established and emerging technologies,
while forecasting their present and potential future
applications.

Methods

The review integrates research articles and literature
reviews, retrieving information from different sources.
Searches were conducted in Medline and Embase up
to January 2024 using key words and MeSH terms (i.e.
vaccines, immunization), and we also referred to the
BioRxiv and MedRxiv platforms for unpublished data
and supplementary details. In addition, we consulted
selected clinical trial registries, publicly available
documents, and reports from technical committees
at both national and international health level.
Further data and insights were collected interviewing
experts in the field. We first embark on reconstructing
the trajectory of vaccine research, elucidating the
overarching direction and the array of tools currently
available: this involved delineating the general path of
progression and highlighting the available resources.
Subsequently, we provide detailed insights into the
platforms currently prominent in the vaccine pipeline:
our exploration encompass understanding their
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functionalities, strengths and limitations, current fields
of experimentation, and, whenever feasible, prospects
for future applications. Finally, we synthesize the
literature findings, consolidating them into a dedicated
summary table. The content of this paper was presented
during the advanced course “Vaccination in high-risk
individuals” organized by the International School of
Epidemiology and Preventive Medicine “Giuseppe
d’Alessandro” at the “Ettore Majorana” Foundation
and International Centre for Scientific Culture on 2023
November 22-25 (12).

Results

Vaccine R&D trajectory

A well-known barrier in vaccine development since
its early stages has been the decreasing effectiveness
of immunostimulation as antigens are simplified
and purified. Earlier attenuated or inactivated
whole-organism vaccines provided a significant
immunogenicity but were poorly tolerated due to
frequent side effects (13,14). As shown in Figure 1,
to reduce reactogenicity, vaccines have progressively
shifted towards formulations comprising only
sections of the microorganism, subunits, or purified
antigens (15). However, while vaccines containing a
limited set of purified antigens typically demonstrate
superior safety profiles compared to live-attenuated
and whole-pathogen vaccines, a decrease in their
immunogenicity often occurs (13). For instance,
purified protein antigen vaccines without adjuvants
elicit a modest antibody response with minimal or
no T cell response. The incorporation of adjuvants
or other enhancers facilitated the reinstatement of
immunogenicity in these vaccines, often showcasing
significantly enhanced tolerability profiles, compared
to conventional whole inactivated organism vaccines.
These adjunctive components serve to amplify and
fine-tune the body’s immune reaction, compensating
for the lower immunogenicity of certain novel
vaccine technologies. Thus, the strategic use of these
enhancers becomes essential in maximizing vaccines’
effectiveness, ensuring resilient and comprehensive
immune protection.

Adjuvants for Vaccine Platforms

The role of adjuvants in vaccine formulations has
long been recognized. Alum-adjuvanted vaccines were
approved over 70 years ago during the development
of vaccines for diphtheria, tetanus, pertussis, and
poliomyelitis. This type of adjuvant preferentially
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stimulates CD4 cells. Since then, adjuvants have
evolved over time, progressing towards formulations
that are less reactive, while still capable of stimulating
both the humoral and cellular arms of the immune
system. More recent vaccines, such as those for human
papillomavirus and hepatitis B, have benefited from
similar but updated adjuvants, like AS04, which is
more selective in activating TLR4 and ensuing cellular
component of the immune response. Oil-in-water
emulsion adjuvants (as well as those constituted
by liposomes) such as MF59 and AS03, have been
used in the past and reintroduced more recently
in innovative forms. For instance, AS02 has been
deployed in experimental vaccines for malaria (16).
In general, novel adjuvants’ formulations comprising
emulsions or liposomes involve the incorporation of
monophosphoryl lipid A (MPLA). This compound
maintains its capacity to trigger the innate immune
response through its interaction with TLR-4 (17):
liposomes with the addition of MPLA have been
tested in malaria vaccines as seen in the instances of
ASO1 (18) and ALF formulations (19). New adjuvants
have evolved to ensure concurrent stimulation of both
CD4 and CDS cells. The enhancement of CD8+ T-cell
responses can be further augmented by exogenous
components such as saponins. Specifically, the
saponin QS21, derived from the bark of the Chilean
native tree Quillaja Saponaria, can significantly boost
these responses. For instance, the ASO1B adjuvant
combines MPL with QS21 saponin and has been
employed in the Herpes zoster recombinant vaccine.
Among recent advancements in adjuvant development,
the ASO1E stands out. It serves as an adjuvant for
recombinant protein vaccines, which have already
been employed against COVID-19 (20). This platform
effectively merges various principles used in its
precursors. Specifically, this compound constitutes a
complex where saponin combines with specific fatty
acids, namely cholesterol and phospholipids (20). It
is already incorporated into several vaccines currently
under development, including the R21/Matrix-M
malaria vaccine (21) and selected influenza vaccines
(22).

Where to next after the pandemic?

As of 2023, the global vaccine pipeline include
almost 1000 candidates, the majority being recombinant
protein vaccines (22%), mRNA vaccines (18%),
inactivated vaccines (14%), viral vector vaccines
(14%), and conjugate vaccines (11%) (23). Below,
we provide an overview of the vaccine R&D pipeline
and its innovative aspects, organized by technology
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Figure 1 - Vaccine R&D time trajectory

type. We outline the immunological mechanisms,
applications, and the preventive areas currently being
tested. A summary is reported in table 1.

Recombinant protein vaccines

Recombinant proteins have been used as drugs for
decades (24). They are often produced using bacteria,
yeast, mammalian, or insect cells as factories for

Table 1 - Vaccine platforms, advantages and disadvantages

antigens (25). Recent advancements in recombinant
protein technology have significantly enhanced
efficiency and accessibility, enabling cost-effective
production across various microbial and expression
host systems (26,27). Despite their advantages, the
immune-stimulating potential of subunit vaccines
tends to be lower compared to those containing
the entire virus. As a result, the administration of

Vaccine platform Advantages

Disadvantages

Safe and well-tolerated
Stable at higher temperatures (2-8°C)

Recombinant protein

mRNA Safe and well-tolerated
Highly adaptable to new pathogens

No need for adjuvants

Viral vector
of native antigen)

Mimicking natural infection

Stable at higher temperatures (2-8°C)
Safe and well-tolerated

Stable at higher temperatures (2-8°C)

Inactivated

Conjugate (polysaccharide)
ride vaccine
Stable at higher temperatures (2-8°C)

Stronger immune response (preservation

Low immunogenicity

Requirement of adjuvant or conjugate to increase
immunogenicity

Immunological instability (over time and depending
on new emerging variants)

Requirement of complicated cold chain manage-
ment (-15 to -80°C)

Complicated manufacturing process

Complicated manufacturing process

Moderate immune response

Requirement of high-dose formulations or adjuvants
(under investigation for mucosal vaccines)

Less adaptable to new pathogen

Longer duration of protection compared to polysaccha- Complicated manufacturing process
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multiple doses and the inclusion of adjuvants are
often necessary. During the COVID-19 pandemic,
the spotlight has shifted towards recombinant protein
vaccines, marking a pivotal moment in vaccination
strategies. NVX-CoV2373 is a recombinant vaccine
against SARS-CoV-2 in which nanoparticles are
mixed with ASO1E adjuvant. It requires a standard
cold storage (2-8°C) (28,29). Data from phase 3
clinical trials, which led to their commercialization,
highlighted an efficacy of NVX-CoV?2373 of around
90% against the B.1.1.7 (Alpha) SARS-CoV-2
variant (30,31). Furthermore, as real-world data
is accumulating, in a prospective observational
study, NVX-CoV2373 protein-adjuvanted vaccine
demonstrated less reactogenicity (77.6%) than mRNA
vaccines (95.9%) (32). Italian real-world data collected
on 21000 subjects showed an estimated effectiveness
of a NVX-CoV2373 primary cycle higher than
BNT162b2 and similar to mRNA-1273 (around
45%) (33). A decrease in effectiveness based on the
circulating variant has also been documented in post-
market observational studies of both mRNA COVID-
19 vaccines (34). While recombinant technology
may still exhibit limitations in terms of long-term
efficacy, its advantages in terms of reactogenicity and
a high safety profile make such technology extremely
advantageous. In March 2023, EMA recommended the
approval of PHH-1V as a booster vaccine for COVID-
19 (35). PHH-1V is an adjuvanted recombinant protein
vaccine that applies recombinant DNA technology
to combine two distinct receptor binding domains
(RBDs) from the Beta and Alpha variants of SARS-
CoV-2. A booster dose of PHH-1V administered
at 6 months demonstrated significantly higher
neutralizing antibody titers, compared to individuals
who received the BNT162b2 mRNA vaccine, showing
efficacy against different variants (36,37). The DNA
recombinant protein vaccine PHH-1V exhibited
also low reactogenicity and achieved significantly
superior neutralizing antibody responses, compared to
BNT162b2 (38). Notably, PHH-1V does not require
deep-freezing for distribution or onsite storage (36):
this characteristic facilitates storage and distribution
across diverse logistical and healthcare settings.
A saponin-adjuvanted recombinant DNA vaccine
(RZV), specifically designed for preventing herpes
zoster (HZ), has already received approvals from both
the FDA and EMA, showing greater effectiveness
than the zoster live attenuated vaccine (ZVL) (39,40).
Differently from ZVL, its low reactogenicity enables
administration to high-risk immunocompromised
patients aged 18 and older, expanding vaccine’s target
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population; this expansion positively impacts on
preventive strategies aimed at vulnerable individuals,
providing an improved tool in the planning phase of
public health policies. Additional examples include
recombinant protein vaccines against malaria: in
October 2023, the World Health Organization (WHO)
recommended the R21/Matrix-M malaria vaccine as it
was shown to reduce symptomatic cases of malaria by
75% during the 12 months following a 3-dose series
in areas with highly seasonal transmission (41). Two
recombinant vaccines have already been approved
by the FDA and EMA for respiratory syncytial virus
(RSV) prevention among elders (42,43), one of
which has also been approved for vaccination during
pregnancy and for preventing the disease in newborns
(44,45). Its characteristics make the recombinant
platform attractive for the future: several vaccines
using this technology are currently being studied in
clinical research, including a quadrivalent seasonal
influenza vaccine (46).

mRNA vaccines

The pioneering technology of messenger RNA
(mRNA) vaccines has garnered immense recognition,
notably highlighted by the 2023 Nobel Prize in
Physiology or Medicine awarded to the scientists
behind its development. mRNA, encoding a specific
protein capable of mimicking the antigen, is delivered
through lipid nanoparticles (LNPs) vaccine vehicles
and enters cells solely via endocytosis. mRNA
vaccines exhibit a self-adjuvant effect as the single-
stranded RNA (ssRNA) can be identified by Toll-Like
Receptor 7 (TLR7) and TLRS8 within endosomes (47),
subsequently triggering a cellular immune response in
addition to the humoral response activated by the post-
translational antigen presentation (48,49), without the
need for an adjuvant. Furthermore, the lipids present
in the nanoparticle, where the mRNA is carried, can
stimulate the production of IL-6, thereby amplifying
the CD4+ follicular helper T cell and B cell response
(50). Due to their intrinsic ability to activate cellular
immunity, this type of vaccine was first tested in
an oncological setting, specifically in patients with
advanced-stage melanoma, in an initial trial back
in 2008 (51). As for recombinant protein vaccines,
the advantages of mRNA-based vaccines stem from
their proven effectiveness and safety records. Within
the fight against SARS-CoV-2, mRNA vaccines
have emerged as frontrunners, with BNT162b2
and mRNA-1273 receiving global emergency use
authorization. The pandemic context has been a
valuable testing ground for this type of vaccines
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to assess their resilience. From this perspective, as
mentioned earlier, mRNA vaccines share similar
results in terms of effectiveness and reactogenicity
with recombinant protein vaccines. They also face
comparable challenges concerning the duration of
effectiveness and efficacy against newly emerging
variants: from an observational study in England,
effectiveness of a BNT162b2 or mRNA-1273 booster
against COVID-19 symptoms declined consistently
under 50% at 10 or more weeks (52). In the case of
mRNA vaccines, the challenge of immunological
stability compounds the logistical issue of storage.
It has been demonstrated that the lipid nanoparticle
composition of these vaccines is influenced by certain
elements, such as pH and temperature. Specifically,
very low temperatures are associated with a higher
particle concentration and better functionality,
whereas exposure to excessively high temperatures
compromises the nature of the nanoparticles, causing
them to aggregate (53). This necessitates a cold-chain
storage for these vaccines, posing organizational
challenges both in terms of storage and transportation.
For instance, ultra-cold storage requirements slowed
down the distribution of COVID-19 mRNA vaccines
in low income countries (54). The similar effectiveness
of mRNA and recombinant vaccines is biologically
proportional to the immune response prompted by
both technologies: initial real-world data showed
a similar response in both spike-specific CD4+ T
cell response and acute and memory CD8+ T cell
frequencies (55). Interestingly, observational studies
have consistently indicated distinctions between the
two mRNA COVID-19 vaccines concerning immune
response (56,57) and clinical effectiveness (58,59)
in immunocompromised populations with mRNA-
1273 associated to better outcomes than BNT162b2.
mRNA-1273 and BNT162b2 vaccines were associated
with a very low risk of adverse events (60); mRNA-
1273 was also found to be correlated to a lower
risk of selected adverse events, such as pulmonary
embolism, thromboembolic events, myocarditis,
pericarditis and acute myocardial infarction, compared
with BNT162b2 (61,62). While the incidence
of myocarditis and pericarditis appears slightly
elevated following mRNA vaccine administration
compared to the general population, it remains
considerably lower than the risk associated with a
SARS-CoV-2 infection (63,64). When considering
the broader spectrum of cardiovascular risks posed
by COVID-19, the overall benefit-risk assessment
strongly advocates for vaccination across all age and
gender demographics (65). Overall, mRNA vaccine
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technology has demonstrated significant reliability.
Initially, it provided a tool capable of addressing the
pandemic threat, and over time, it has shown excellent
efficacy in the medium term (though not entirely in the
long term), along with an outstanding safety profile:
effectiveness against severe diseases varied between
75% and 90% depending on the predominant variants
(34). Not surprisingly, the vaccine pipeline using this
technology is rich and extremely promising: a new
vaccine (mRNA-1345) for preventing RSV disease
in individuals over 60 has shown an 80% efficacy
in a phase 3 trial (66). In the near future, a new pan-
respiratory vaccine could combine three mRNA
vaccines in the same formulation (mRNA-1230):
COVID, influenza, and RSV (67). A Phase 1 Study has
been started to evaluate the safety and immunogenicity
of a mRNA Vaccine (mRNA-1644) against HIV.
Furthermore, mRNA vaccines research for cancer
treatment experienced a significant acceleration
with the implementation of this technology during
the pandemic period: the underlying mechanism
involves antigen-presenting cells displaying tumour-
associated antigens on both MHC class I and MHC
class II to activate CD8+ and CD4+ T cells (68). Some
trials showed sustained positive responses in cancer
patients post mnRNA-based vaccine treatment, without
encountering uncontrollable toxic effects (69). mRNA
vaccines exhibited potential as valuable therapeutic
options for upcoming cancer treatments, particularly
when used alongside supplementary immunotherapies
(70). Administration of mRNA-4157/V940 vaccine
as an adjuvant therapy during a 2b phase trial, in
conjunction with a monoclonal antibody, decreased
the risk of recurrence or death by 44% in individuals
with completely removed stage III/IV melanoma
(71).

Viral Vector Vaccines

The technology of recombinant vectors used to
deliver antigens from a specific microorganism has
been employed for a long time (72). Viral vectors are
harmless and serve as vehicles to transport genetic
information into host cells, prompting the synthesis of
antigens that activate the immune response (73): they
undergo genetic engineering to incorporate specific
genes that encode crucial antigens of pathogens
(74). Various viruses, including retrovirus, lentivirus,
cytomegalovirus, and adenovirus, have been used
as carriers. Among these, adenovirus stands out as
the most commonly employed viral vector owing
to its extensively documented safety profile and its
ability to effectively stimulate the inflammatory



Advancing Vaccine Research & Development

and immune systems (75). Indeed, one advantage
of replicating vectors is their mimicry of a natural
infection, resulting in the induction of cytokines
and co-stimulatory molecules that provide a potent
enhancing effect; viral vector vaccines can induce high
immunogenicity without the use of an adjuvant, along
with enduring immune responses (76). ChAdOx1-S
and Ad26.COV2.S, two viral vector vaccines, were
among the initial resources employed in the fight
against COVID-19 (77). In the case of the ChAdOx1
nCoV-19 vaccine, the genetically modified chimpanzee
adenovirus carries the gene responsible for the SARS-
CoV-2 spike protein into the nucleus, where it is
transcribed into mRNA by DNA polymerase (74).
Despite their effectiveness in reducing SARS-CoV-2
complications, this type of vaccine has demonstrated
lower immunogenicity compared to its mRNA
counterparts. In a prospective cohort study conducted
in the Netherlands, four weeks after the completion
of the initial vaccination series, individuals who
received mRINA-1273 vaccines exhibited the highest
levels of neutralizing antibodies against the SARS-
CoV-2 wild-type; this was followed by recipients
of the BNT162b2 vaccine, whereas considerably
lower antibody titres were observed in individuals
vaccinated with the adenovirus vector-based vaccines
ChAdOx1-S and Ad26.COV2.S (78). In a longitudinal
analysis of immune response to four different COVID-
19 vaccines, neutralizing antibody titres were also
observed to be lower compared to NVX-CoV2373
(55). These findings are consistent with the distinct
cellular dynamics triggered by different types of
vaccines, showing a lower spike-specific CD4+ T
cell response at 6 weeks post-immunization for viral
vector vaccines, compared to mRNA vaccines and
recombinant protein vaccines (55). Furthermore, viral
vector vaccines demonstrated the capability to trigger
Th1 cell responses, thereby eliciting strong protective
effects (79). Viral vector-based vaccines are associated
with more frequent systemic side effects, compared
to mRNA-based vaccines (80,81,82). A systematic
review reported a higher number of cardiovascular
and hemorrhagic events following viral vector-based
vaccine administration compared to mRNA-based
vaccines, based on data collected from 98 studies (83).
Furthermore, vaccine-induced immune thrombotic
thrombocytopenia (VITT) has been reported after
adenoviral vaccines administration (84,85) and a
strong association was found between VITT and
adenoviral vector-based vaccines (86,87,88) compared
with mRNA-based vaccines (89), mostly among
females aged below 60 (90). Nevertheless, viral vector
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vaccines use is associated with significant logistical
advantages, as demonstrated during the pandemic: this
type of vaccine is challenging to manufacture but the
enhanced molecular stability allows for storage at less
extreme temperatures compared to mRNA platforms,
facilitating also easier transportation (91,92). Viral
vector vaccines represent a large share of the current
vaccine pipeline, with over 130 candidates (23).
Among these, approximately 80 are composed of
adenoviral vectors and are being tested for vaccines
against influenza, Ebola and HIV (93).

Inactivated vaccines

Inactivated vaccines, along with live attenuated
vaccines, belong to a more traditional type of vaccines
and have been widely used in clinical practice
for a long time. Inactivated vaccines comprise
all pathogen’s components but in an inactivated
state, making it unable to cause illness in humans.
These vaccines are crafted using methods like heat,
radiation, or chemical agents such as formaldehyde or
B-propiolactone, that disassemble the viral structure
and genetic material (94). Notably, inactivated
vaccines are widely regarded as safe. However, they
typically exhibit relatively lower immunogenicity,
potentially resulting in a weaker immune response
(95,96). To enhance vaccines’ effectiveness high-
dose formulations are required (97). Alternatively,
adjuvants are often included to elicit a stronger
immune response (98,99): influenza adjuvant trivalent
inactivated vaccine was more effective in averting
influenza-related outcomes compared to high-dose
inactivated vaccine (100). VLA2001 (inactivated
whole-virus, adjuvanted SARS-CoV-2 vaccine) was
the first COVID-19 vaccine to receive a standard
marketing authorization in Europe. In a phase 3 trial
VLA2001 showed lower reactogenicity and exhibited
higher immunogenicity compared to ChAdOx1-S
(101). The safety and comprehensive knowledge of
these vaccines still make them viable candidates for
various platforms: currently, inactivated vaccines for
influenza, Zika, and rabies are undergoing trials (102).
Storage is permitted at standard temperatures (2-8°C)
(28,29). In recent years, inactivated formulations have
been employed for the production of mucosal vaccines
(e.g., influenza, cholera), and others are currently
under experimentation (e.g. against SARS-CoV-2)
(103): in this context as well, the use of adjuvants
emerges as a potential solution to enhance the efficacy
of inactivated vaccines (104). However, uncertainties
persist regarding the potential reactogenicity of current
adjuvants for mucosal delivery (105).
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Conjugate vaccines

Conjugate vaccines are a category within the domain
of subunit vaccines, largely used for pneumococcal
immunization. They are characterized by a specific
composition where a polysaccharide chain is attached
to a immunogenic carrier protein (106) in order to
enhance immunogenicity and stability (23). This
unique configuration allows conjugate vaccines to offer
prolonged protection compared to raw polysaccharide
vaccines (107,108). They require standard storage
(2-8°C) (109), but their manufacturing is a complex
process (110). Conjugate pneumococcal vaccines have
evolved, progressively targeting a greater number
of bacterial serotypes. Recently, PCV15 and then
PCV20 have been added to the pool of available
conjugate vaccines. In a phase 1/2 trial, V116, an
experimental 21-valent pneumococcal conjugate
vaccine (PCV), exhibited good tolerance with a safety
profile largely similar to PPSV23. Furthermore, it was
non-inferior to PPSV23 for the common 12 serotypes
and superior for the 9 unique serotypes in V116
(111). Innovative conjugation methods are currently
undergoing experimentation: site-specific covalent
conjugation could lead to a more reliable conjugation
process, allowing the incorporation of a greater
variety of serotypes while reducing carrier-mediated
immunological interference: VAX-24 exhibited
a superior immunological response compared to
PPV23 (112,113). Moreover, new Multiple Antigen
Presenting System (MAPS) platform, harnessing a
high-affinity noncovalent binding technology, showed
arobust B-cell and T-cell immune response in animal
models (114): a 24-valent pneumococcal MAPS
vaccine has completed a Phase 2 trial in older adults
(115) demonstrating a stronger antibody response
compared to vaccinations with PCV13 and PPSV23
while maintaining a similar safety profile (116), and is
currently undergoing a Phase 2 trial in infants (117).

Discussion

Ongoing efforts in vaccine R&D are prominently
focused on innovative technologies designed to
enhance the effectiveness and resilience of evolving
vaccine platforms. These advancements not only show
potential in strengthening vaccine efficacy, but also
hold promise for addressing organizational challenges
that emerged during the pandemic (118-120). The
introduction of novel technologies may provide
solutions to logistical complexities, particularly in the
management of the cold chain, while simultaneously
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enabling more efficient and widespread immunization
campaigns. Moreover, these advancements may set
the stage for proactive initiatives targeting various
potentially emerging diseases, especially within
vulnerable populations, thereby enabling timely and
comprehensive preventive approaches.

During the COVID-19 pandemic, technologies such
as recombinant protein vaccines and mRNA vaccines
have experienced remarkable success. These platforms
have undergone extensive development and constitute
the cornerstone of the current vaccine pipeline.
While recombinant vaccines entered the market later,
holding large potential, they have yet to undergo
long-term evaluation compared to mRNA vaccines.
Despite demonstrating highly reassuring levels of
effectiveness and safety, mRNA vaccines present two
main challenges to address: the first relates to their
high immunological instability, requiring periodic
booster doses; the second is an organizational concern
regarding the storage of formulations at sufficiently
low temperatures to prevent denaturation (121). The
forthcoming generation of mRNA vaccines, using self-
amplifying mRNA (saRNA), or replicon RNA, holds
the potential to overcome these challenges. Replicons
share the same mechanism of action as current mRNA
vaccines but, additionally, they are linked to a self-
amplifying gene that enables them to replicate within
the cell: in this way, each replicon can transcribe for
proteins, allowing the translation of a greater number
of them. Another cutting-edge possibility involves
the utilization of circular RNAs (circRNASs), a recent
advancement in the mRNA vaccine domain: due to
the absence of free ends susceptible to exonuclease
degradation, they exhibit enhanced stability compared
to linear mRINA vectors (122).

The challenge associated with the stability of
newly manufactured vaccines is not only tied to
their effectiveness, but also to the organizational
aspects of their administration. Currently, innovative
technologies ensure the production of safe vaccines
but require periodic boosters. Thanks to their robust
safety profile, they will facilitate administration
to increasingly larger segments of the population,
allowing for the prioritization of high-risk patients,
regardless of age. The need to vaccinate more people
and more frequently is propelling R&D to explore
new combined formulations: as mentioned earlier,
experimentation is underway for a pan-respiratory
vaccine (mRNA-1230), while additional combinations
are currently being explored. Notably, a vaccine
candidate targeting influenza and COVID-19 (mRNA-
1083) has already entered Phase 3 evaluation after
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achieving antibody titres similar to, or greater than
licensed quadrivalent influenza vaccines and the
mRNA-1273 COVID-19 vaccine (123).

The substantial surge in vaccine research driven by
the COVID-19 pandemic is set to decelerate. Given the
extraordinary historical context and the unprecedented
volume of funding, largely supplied from public and
governmental sources, the vaccine pipeline has seen
significant enrichment in recent years, both in terms
of quantity and technological diversity. Platforms like
mRNA, originally explored in other fields of medicine
such as oncology, have shifted focus to infectious
disease prevention, yielding remarkable outcomes
within relatively short timeframes. As we transition
from an emergency context, innovative technologies
will face challenges: it is likely that only the most
promising or those with a well-established track
record of reliability will persist in use, contributing
to a sustainable perspective. New technologies have
far exceeded the challenges posed by the pandemic,
with recombinant protein and mRNA platforms
emerging as dominant players in the vaccine pipeline:
they are currently undergoing trials for broader
applications across various diseases and domains.
However, certain limitations have undeniably
emerged: historically, vaccine R&D developed from
safer and less reactive platforms, but enhanced safety
profiles often correlate with reduced immunogenicity.
Especially in highly variable pandemic contexts,
where exposure to rapidly evolving viral agents is
prevalent, such vaccines have demonstrated limited
long-term immunological stability. This highlighted
the need for booster administrations and a decline
in efficacy against emerging variants. Nonetheless,
ongoing advancements are directed towards bolstering
the stability and reliability of these tools: emerging
technologies, such as experimental self-amplifying
mRNA (saRNA) or circRNAs, aim to enhance
the stability of mRNA vaccines, prolonging their
efficacy over time and enabling more convenient and
less resource-demanding transportation and storage
methods. Overall, vaccine research is also progressing
towards technologies that facilitate highly effective
and large-scale public health strategies. In this context,
improved safety profiles are poised to broaden the
pool of eligible candidates, preventing potential
complications from dangerous disease in high-risk
individuals across all age groups (124). Additionally,
biologically more stable technologies will streamline
storage and transportation systems, thereby simplifying
organizational and logistical processes. This study
presents certain limitations related to the narrative
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approach of our review. Its objective is to provide
context to the current landscape of vaccine research, a
field that has undergone significant acceleration amid
the ongoing pandemic. Just as pathogens constantly
evolve, vaccines necessitate adaptation to enhance
effectiveness while upholding safety standards. Our
data and reasoning provide insights to public health
policymakers, tasked with enhancing the development
of preventive strategies targeting broader populations,
and ultimately maximizing efficiency in the utilization
of both time and resources.
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Riassunto

Opportunita e prospettive future della pipeline vaccinale e
dell’innovazione in vaccinologia

Introduzione. La pandemia da COVID-19 ha avuto un profondo
impatto sulla ricerca in ambito vaccinale, sul mercato globale, sui
programmi e le politiche di immunizzazione. La necessita di far
fronte in tempi rapidi all’emergenza sanitaria ha reso necessarie
diverse innovazioni: a livello regolatorio le procedure di immissione
in commercio sono state riviste e rese pill rapide e la capacita di
produzione e distribuzione ha visto un incremento significativo. Lo
scopo di questa revisione ¢ quello di ricostruire la traiettoria della
ricerca in ambito vaccinale, evidenziandone le attuali sfide e le
principali criticita.

Disegno dello studio. Lo studio ¢ una revisione narrativa della
letteratura.

Metodi. Le evidenze disponibili sono state selezionate consultando
i principali database biomedici, preprint server, registri di trial clinici,
selezionate fonti di letteratura grigia e rapporti scientifici. Ulteriori
dati e approfondimenti sono stati raccolti attraverso la consultazione
di esperti nel settore. Abbiamo analizzato I’'impatto complessivo della
pandemia sulla ricerca e sviluppo in ambito vaccinale, sui quadri
normativi e sul mercato. Siamo passati poi ad analizzare I’attuale
pipeline vaccinale e le tecnologie ad oggi impiegate. Infine, sono
state riassunte le prospettive future nello sviluppo dei vaccini e
nelle strategie di immunizzazione, delineandone le principali sfide
e opportunita.

Risultati. Lo sviluppo dei vaccini COVID-19 ¢ stato supportato
da ingenti finanziamenti pubblici. Lo sviluppo di nuove tecnologie,
insieme a processi di autorizzazione ed immissione in commercio
pit rapidi, hanno permesso di controllare la pandemia, generando
una crescita esponenziale del mercato vaccinale globale. Nell’era
post-pandemica, gli investimenti in prevenzione sono destinati a
decrescere, ma i progressi tecnologici in atto hanno il potenziale per
supportare le future strategie di immunizzazione. Nel 2023 la pipeline
vaccinale include circa 1000 candidati, tra cui vaccini a proteine
ricombinanti, vaccini a base di acidi nucleici e vettori virali, vaccini
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inattivati e coniugati. Nella trattazione dettagliamo lo sviluppo delle
piattaforme tecnologiche, differenziando malattia infettiva preveni-
bile e popolazioni target. In generale, la ricerca in ambito vaccinale
progredisce verso prodotti sempre piu sicuri ed efficaci, di facile
produzione e stoccaggio e di agevole conversione.

Conclusioni. La ricerca in ambito vaccinale evolve rapidamente:
le nuove tecnologie mettono a disposizione della sanita pubblica
nuovi strumenti utili ad estendere la protezione vaccinale. Nuove
ricerche basate su real-life data sono necessarie per valutare 1’impatto
di tale potenziale come strumento di prevenzione per la tutela della
salute collettiva.
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