

***Trichophyton mentagrophytes* genotype VII, an emerging infection: a Systematic Review**

Luigi Cofone¹, Lorenzo Paglione², Fabiano Grassi¹, Federica Patania¹, Ivano Pindinello¹, Antonia Quarantiello¹, Marise Sabato¹

Keywords: *Trichophyton mentagrophytes genotype VII; emerging infection; sexually transmitted*

Parole chiave: *Trichophyton mentagrophytes genotype VII; infezione emergente; trasmissione sessuale*

Abstract

Background. In the past few years there has been a dramatic change in the prevalence of the genotype VII of the *Trichophyton mentagrophytes*. *Trichophyton mentagrophytes* is a dermatophyte fungus commonly found in wild, terrestrial and burrowing animals such as rabbits, that has now adapted to an anthropophilic environment and is responsible of an emerging zoonosis.

Study design. A thorough background research and a systematic review have been done to show the effect of this emerging dermatophytic infection on humans.

Methods. Three electronic databases were searched for eligible studies: PubMed, Scopus and Web of Science. All the articles found were then screened, first, by title and abstract and, then, by full text. A quality assessment was done using the Newcastle–Ottawa Quality Assessment Scale (NOS).

Results. 28 articles were found. 4 of which were included in this review. These articles were produced in France, Switzerland, the USA and Germany. They showed interesting clinical evidence regarding how this inter-human multidrug resistant mycosis could easily become an epidemic sexually transmitted infection.

Conclusions This systematic review emphasizes how the spread of this pathogen, genotype VII, in humans must not be underestimated. Consequently, in order to facilitate early intervention and, thus, avoid a multi resistant epidemic growth of this infection, new diagnostic measures are required.

¹ Department of Public Health & Infectious Diseases, Sapienza University of Rome, Italy

² Department of Prevention, ASL Roma 1, Rome, Italy

Introduction

Recently, there has been a sudden spike in sexually transmitted infections, including the infection caused by the *Trichophyton mentagrophytes* (T.M.) genotype VII (1,2). It must not be forgotten that superficial fungal infections of the skin, otherwise known as dermatophytosis, are the most common of all mycoses. In fact, skin mycoses actually afflict approximately 20-25% of the world population (3). The frequency of these dermatomycosis has been increasing in these last few years. A combination of geographical location, a variety of environmental and cultural conditions, and the predominant anatomical infection patterns influence the distribution of dermatomycoses and the associated aetiological agents. (3,4). The dermatophyte's growth depends mainly on surface temperatures, which ideally should be between 25°C and 28°C. Moreover, a warm, moist environment can also promote skin infection.

Dermatomycoses are more common in poor social and economic conditions. The risk of contracting these fungi increases in cramped living conditions, which facilitate frequent skin-to-skin contact, close proximity to animals, as well as potentially inadequate hygienic practices. Moreover, superficial skin infections have little tendency to self-limit and inadequate/non-existent healthcare may contribute to a pandemic spread of cutaneous mycoses. Although there are local characteristics and individual predispositions to dermatophyte infections, the variety of these infections is not stable. Mass tourism, international sports events, and increased migration promote the introduction and spread of rare or previously neglected dermatophyte species (3). *Trichophyton mentagrophytes* (T.M.), a dermatophyte species, usually found in wild, terrestrial and burrowing animals such as wild rabbits, has now adapted in an anthropophilic setting. T.m. is now one of the top three most frequent fungi that cause "ringworm" in domestic animals such as rabbits and guinea pigs, but can also be found in cats and dogs (5-8).

T.M. has evolved in an anthropophilic setting. It is now one of the major causes of zoonotic skin diseases and the second most isolated fungus causing inflammatory tinea infections in humans. Based on ITS regions of rDNA gene similarity, the *Trichophyton mentagrophytes* complex includes three entities: *T. mentagrophytes* (including ITS genotypes III, III, IV, VII and IX), *T. interdigitale* (including ITS genotype II), *T. indotinea* (ITS genotype VIII) (9-11). Currently, a few genetic variations of these keratinophilic fungi

have the potential to spread from one human to another (12,13). Furthermore, as reported in several studies, we are witnessing the establishment of a drug resistance against T.M., which represents a serious threat to global public health. It increases morbidity and mortality, and is associated with high economic costs due to its health care burden (4,5).

In 2002, tinea cruris (an infection involving the genital, pubic, perineal, and perianal skin), was reported in sex workers, thus, raising the possibility of dermatophytes being sexually transmitted (14). In 2009, *Trichophyton mentagrophytes* was found in a heterosexual couple who had contracted tinea gladiatorum after the index patient had contact with a presumptively infected dog (15). Moreover, Jabet et al. (demonstrated that sexual partners of infected patients have been found to have comparable lesions on multiple occasions.

In contrast to other *T. mentagrophytes* genotypes, T.M. VII has not been linked to dermatophytosis in children who interact with animals, underlining the possibility of it being a sexually transmitted infection (16). Furthermore, as reported in several studies, we are witnessing the establishment of a drug resistance against

T.M., which represents a serious threat to global public health. It increases morbidity and mortality, and is associated with high economic costs due to its health care burden (17-19).

Materials and Methods

1. Selection Protocol and Search Strategy

The current systematic review was conducted according to Preferred Reporting Methodology for Systematic Reviews and Meta-Analyses (PRISMA) (20). The protocol has been registered in PROSPERO with the following ID: CRD42024571209.

Research involved the use of three separate databases: PubMed, Scopus and Web of Science. All articles from the beginning to 19 July 2024 were then selected using the search string "*Trichophyton mentagrophytes* genotype VII".

1.1. Inclusion Criteria for the Study

All the articles found were then screened, first, by title and abstract and, then, by full text. The selection was done independently by all authors (L.C., M.S., L.P, F.G., F.P., A.Q., I.P.). The same authors individually reviewed all the papers. Any questions, doubts or inconsistencies that were found,

were resolved, between all the authors, by discussion until unanimous agreement. All research that provided any given data with regard to this microorganism or its impact/effect on humans was considered valid. Articles that contained unique information, including case reports, were considered to compensate for the limited information available. Reviews, meta-analyses, symposia and editorials, were excluded from this research. The authors only included articles that were in English or Italian.

1.2. Data Extraction and Quality Assessment

Information regarding author, year, country, sex, age, sexual orientation, co-infection, partner infection, transmission mode, lesions and therapy used was, then, extracted from all the included studies. Data were organised in order, based on the mode of transmission, the effect/impact of this emerging infection, diagnosis and treatment.

A quality assessment was done using the Newcastle-Ottawa Quality Assessment Scale (NOS). The NOS for observational studies evaluates study quality according to a set of questions, where each study can be assigned up to nine points based on three areas. The first domain, “SELECT” (4 points), considered study group selection, sample size, respondent profile, and whether the different risk factors were clearly identified. The second domain, “COMPARATIVITY” (2 points), included the comparability of different outcome groups and whether confounding factors were controlled. The final domain, “RESULTS” (3 points), examined whether verification of exposure and outcome was clearly assessed, or whether statistical testing, if used, was appropriate. The scores were then added up and the quality was considered “Good” if the total was greater than 7, “Fair” when the score awarded was between 5 and 7, or “Poor” if the final result was less than 5 (21).

Results

After a thorough research, a total of 28 studies were extracted from the following databases: PubMed, Web of Science and Scopus. Of these, 15 duplicates were removed and 13 were then screened based on title and abstract.

In the following stage, 4 articles were excluded as they did not meet the inclusion criteria previously decided by all authors. The remaining 9 articles were then reviewed by full-text.

After having reviewed all the remaining texts, 5

articles were excluded for the following reasons: 1 did not contain information concerning humans, 2 were not experimental studies, and for 1 no clinical information could be found. Finally, only those 4 articles that met the inclusion criteria were included (Figure 1).

Quality was then measured using the NOS stated above, Table 1 summarises the data extracted from the included studies.

The articles included were published in the years 2019 (22), 2020 (23), 2023 (16) and 2024 (24). These studies were conducted in France (16), Switzerland (23), the USA (24) and Germany (22). The 4 included studies described patients between the age of 22 and 59 (16, 22-24) and two reported a homosexual orientation (16,24). Most patients, in these studies, have described that they presented with the infection after having returned from a trip abroad and after sexual intercourse (16,22-24). Two of these studies reported transmission to partners (16,22).

Only one article reports the average time of 28 days between the appearance of lesions and hospital consultation (16). Lesions reported are skin lesions with scaly, erythematous eruption in the inguinal region, genitalia, legs, arms, and back (16,22-24).

Patients were submitted to antifungal treatments (terbinafine, itraconazole, or voriconazole) systemically and/or topically (16,22-24). The follow-up was conducted every 2-4 weeks after the onset of therapy (22). The persistence of post-inflammatory pigmentation and scarring or loss of beard hair was noted (16).

The patients’ sites of infection (external genitalia, buttocks, face), the high-risk STI profile, and consistent identification of T.M. VII suggest that it is a sexually transmitted infection. The lack of contact between the patients and animals also suggests the possibility of human-to-human transmission (16,22-24).

Regarding the quality assessment, only 1 study was considered “Fair”, while the other 3 were considered “Good”.

Discussion

Dermatophytosis caused by the fungus T.M. genotype VII, often results in the development of tinea genitalis/pubogenitalis (if the genitals and inguinal folds are affected), corporis (various parts of the body, including trunk), faciei (face), and barbae (beard). Sometimes, ulcers or abscesses can develop. The observed prevalence of the sites of infection suggest

Table 1 - Summary of the characteristics of the studies included in the review

Authors, Country, Year	n°; sex; age (range); sexual orientation	Co-infection	Travel	Partner infection	Mode of transmission	Lesions	Therapy	Follow-up	Conclusion	Quality assessment
Jabet A, et al. France 2023 (16)	13 M; 39 F; 22-59; 11 and 5 were tak-homosexual; 1 HIV preexposure prophylaxis; 1 bisexual; 1 heterosexual	7 HIV positive, and 5 were tak-homosexual; 1 HIV preexposure prophylaxis; 1 bisexual; 1 Spain; 1 India; 3 reported Chlamydia trachomatis; 1 having had Syphilis; 3 mon-keypox virus; 1 Klebsiella aerogenes	4 no outside France; 1 in Germany; 1 in Slovenia; 1 Spain; 1 India	4 patients	Sexual inter-course	Five patients had a single skin lesion, and others had multiple lesions. (terbinafine, itraconazole, or inguinal papules and nodules suggestive of Majocchi 2 had highly inflammatory folliculitis of the beard (kerion), and the others had typical erythema-squamous lesions with an active border	9 patients received systemic antifungal treatment (terbinafine, itraconazole) for 3 weeks to of Majocchi 2 had highly inflammatory folliculitis of the beard (kerion), and the others had typical erythema-squamous lesions with an active border	3 postinflammatory pigmentation; 2 scars or beard hair loss.	Sexual transmission	good
Klinger M, et al. Switzerland 2020 (23)	for type VII 7; 2 F; 31 (26-42) No sexual orientation	3 in Thailand	Anthropophilic, sexually transmitted	Extensive ulcerations in the genital area, inguinal and anal areas, facial area	Terbinafine, 3 patients for systemic therapy; 4 with a combination of systemic and topical therapy	The transmission of genotype TM-VII, on the other hand, seems to be mostly due to sexual contact and appears to occur often in Thailand.. The infection frequently leads to inflammatory tinea, and therefore, patients are usually treated with oral antifungals for 8 weeks.	good			

<p>Kupisch et al. 2019 (22)</p> <p>for type VII Escherichia coli; 37; 2 F; 31 Staphylococcus aureus (26-42)</p> <p>No sexual orientation</p>	<p>Japan, China, Russia, Georgia and Australia, Southeast Asia</p>	<p>5 patients</p>	<p>From human to human</p>	<p>The infections were highly inflammatory with erythematous plaques and pustules and extremely painful</p>	<p>Combined synergistic therapy consisting of systemic treatment with 250 mg terbinafine daily and local application of miconazole and/or ciclopirox olamine several times daily is recommended. If terbinafine therapy was ineffective, a switch to itraconazole was successful.</p>	<p>The success of antifungal treatment was monitored with fungal culture by sampling and mycological analysis every 2-4 weeks after the onset of therapy.</p>	<p>Infections occur in body parts where the fungi come into direct contact with naked skin, as can also be observed with other dermatophyte infections. The hypothesis of a direct human-to-human infection via sexual contact is supported by the fact that the sexual partners of our patients were also infected in five cases..</p>	<p>Current evidence suggests responsiveness to terbinafine, yet some patients may require itraconazole.6 Prolonged treatment duration may be necessary. When TMVII is suspected or diagnosed, sexual partners should be evaluated and the patient screened for other sexually transmitted infections.</p>
<p>Capan AS, et al. 2024 (24)</p> <p>1; M; 30; homosexual</p> <p>New York</p>	<p>Europe (England and Greece) and California</p>	<p>Sexual intercourse</p>	<p>Scaly, erythematous weekly for 4 weeks with no response. 6 weeks of terbinafine with improvement.</p>	<p>Fluconazole weekly for 4 weeks with further improvement.</p>	<p>Scaly, erythematous region, genitalia, legs, arms, and back</p>	<p>Due to persistent infection, he was transitioned to itraconazole with further improvement.</p>	<p>Current evidence suggests responsiveness to terbinafine, yet some patients may require itraconazole.6 Prolonged treatment duration may be necessary. When TMVII is suspected or diagnosed, sexual partners should be evaluated and the patient screened for other sexually transmitted infections.</p>	

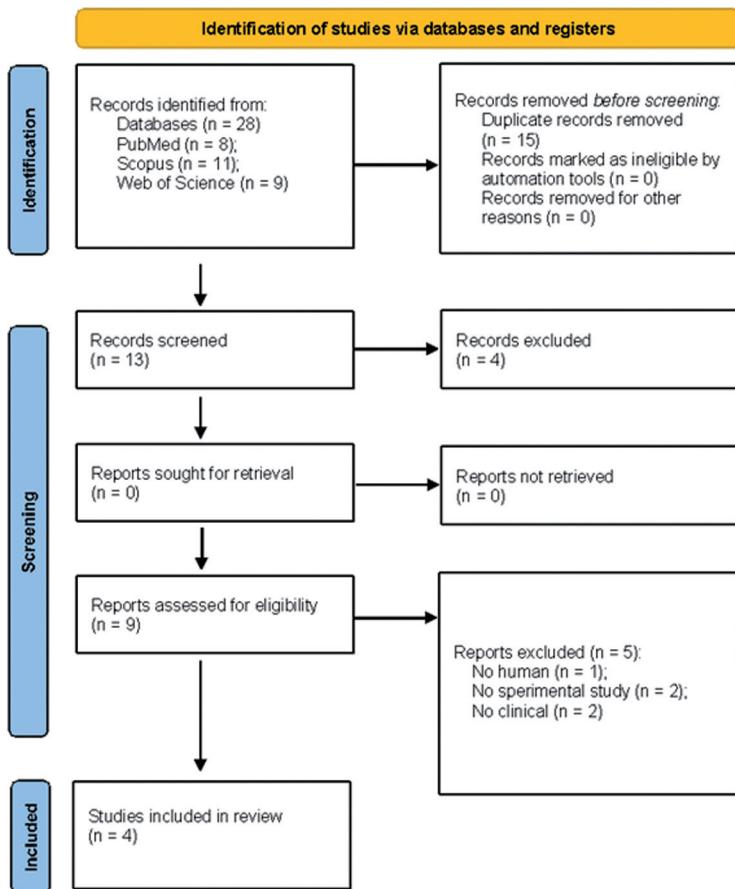


Figure 1 - PRISMA flowchart for search strategy.

that it can be sexually-transmitted, with an increase in anogenital infections (16,22-25).

Recent literature shows an alarming increase in prevalence of this infection in Europe. Transmission has been documented to have occurred in patients who have travelled to Europe or outside Europe in the previous month.

Early documented cases are those individuals who had engaged in sexual intercourse with sex-workers in Asia (16,22-24). Currently, it has been observed that infections not only occur upon return from travel, but also in gyms, and in men-who-have-sex-with-men (16,24). Even if most of the cases are documented in homosexual males, infections have also occurred in heterosexual couples and in women (16). The most affected age group has an average age of 30, usually considered the most sexually active. Another consideration is the prevalence of international travel among this age cohort (Table 1).

Notwithstanding the fact that T.M. has been described as an animal-borne infection, there have been documented cases reporting inter-human transmission. At the initial stages of infection, inflammatory lesions are usually present and are, initially, treated with antibiotics or antifungals which prove to be ineffective over an extended period of time. Routine culture searches are unable to identify the infectious agent, so sequencing of the ITS region is required to identify different species and genotypes. This increases delay in diagnosis and, also, costs (23,26). Most patients were responsive to terbinafine, but some required itraconazole due to the emergence of terbinafine-resistant strains of *T. mentagrophytes* genotype VII, administered either systemically or locally (16,22,26). Patients need a follow-up of about 4-6 weeks with periodic monitoring after eradicating the microorganism. (16,22,25).

Conclusions

This emerging infection caused by T.M. genotype VII must not be underestimated. It is very important to consider this rare, new, sexually transmitted disease (STD) when treating patients that present with inflammatory and purulent dermatophytosis at ano-genital, pubic, facial, and beard sites, and have recently returned from a trip. It is imperative to list *T. mentagrophytes* as an STD, and it is necessary to implement a screening service that can properly diagnose and detect this dermatophyte to facilitate a prompt, expedient, efficacious and appropriate treatment and thus avoid a multiresistant epidemic growth (18,19,26). As a preventive measure, an awareness campaign should be organized, highlighting the importance of protected sex especially among the most susceptible age cohort.

Riassunto

Trichophyton mentagrophytes genotype VII, un'infezione emergente: una revisione sistematica

Premessa. Negli ultimi anni si è assistito a un drastico cambiamento nella prevalenza del genotipo VII del *Trichophyton mentagrophytes*. Il *Trichophyton mentagrophytes* è un fungo dermatofita, che di solito si riscontra in animali selvatici e terrestri, come i conigli, che ora si è adattato in un ambiente antropofilo ed è una zoonosi emergente.

Disegno dello studio. È stata condotta una revisione sistematica per mostrare gli effetti di questa infezione dermatofitica emergente nell'uomo.

Metodi. Sono state utilizzate tre banche dati elettroniche per la ricerca degli studi idonei: PubMed, Scopus e Web of Science. Tutti gli articoli trovati sono stati poi esaminati prima per titolo e abstract, poi per intero. La valutazione della qualità è stata effettuata utilizzando la Newcastle-Ottawa Quality Assessment Scale (NOS).

Risultati. Sono stati trovati 28 articoli, di cui soltanto 4 sono stati inclusi in questa revisione. Questi studi sono stati condotti in Francia, Svizzera, Stati Uniti e Germania. Essi hanno mostrato interessanti evidenze cliniche su come questa micosi multiresistente interumana possa facilmente diventare una malattia infettiva epidemica a trasmissione sessuale.

Conclusioni. Questa revisione sistematica sottolinea come la diffusione di questo patogeno, genotipo VII, nell'uomo non debba essere sottovalutata. Di conseguenza, per facilitare un intervento precoce ed evitare una crescita epidemica multiresistente di questa infezione, sono necessarie nuove modalità diagnostiche.

References

1. Lakshmanan A, Ganeshkumar P, Mohan SR, Hemamalini M, Madhavan R. Epidemiological and clinical pattern of dermatomycoses in rural India. Indian J Med Microbiol. 2015 Feb;33 Suppl:134-6. doi: 10.4103/0255-0857.150922. PMID: 25657132.
2. Tang C, Kong X, Ahmed SA, Thakur R, Chowdhary A, Nenoff P, et al. Taxonomy of the *Trichophyton mentagrophytes*/T. *interdigitale* Species Complex Harboring the Highly Virulent, Multiresistant Genotype T. *indotinea*. Mycopathologia. 2021 Jun;186(3):315-326. doi: 10.1007/s11046-021-00544-2. Epub 2021 Apr 13. PMID: 33847867; PMCID: PMC8249266.
3. Havlickova B, Czaika VA, Friedrich M. Epidemiological trends in skin mycoses worldwide. Mycoses. 2008 Sep;51 Suppl 4:2-15. doi: 10.1111/j.1439-0507.2008.01606.x. Erratum in: Mycoses. 2009 Jan;52(1):95. PMID: 18783559.
4. Macura AB. Dermatophyte infections. Int J Dermatol. 1993 May;32(5):313-23. doi: 10.1111/j.1365-4362.1993.tb01464.x. PMID: 8505155.
5. De Hoog GS, Dukik K, Monod M, Packeu A, Stubbe D, Endrickx M, et al. Toward a novel multilocus phylogenetic taxonomy for the dermatophytes. Mycopathologia. 2017 Feb;182(1-2):5-31. doi:10.1007/s11046-016-0073-9. Epub. 2016 Oct 25. PMC 5283515. PMID 27783317.
6. Cafarchia C, Weigl S, Figueiredo LA, Otranto D. Molecular identification and phylogenesis of dermatophytes isolated from rabbit farms and rabbit farm workers. Vet Microbiol. 2012 Jan 27;154(3-4):395-402. doi:10.1016/j.vetmic.2011.07.021. Epub 2011 Jul 28. PMID 21840652.
7. Mesquita JR, Vasconcelos-Nóbrega C, Oliveira J, Coelho C, Vala H, Fratti M, et al. Epizootic and epidemic dermatophytose outbreaks caused by *Trichophyton mentagrophytes* from rabbits in Portugal, 2015. Mycoses. 2016 Oct;59(10):668-673. doi:10.1111/myc.12513. Epub 2016 Jin 13. PMID: 27292309.
8. Bartosch T, Frank A, Günther C, Uhrlaß S, Heydel T, Nenoff P, et al. *Trichophyton benhamiae* and *T. mentagrophytes* target guinea pigs in a mixed small animal stock. Med Mycol Case Rep 2018 Dec 1;23:37-42. doi:10.1016/j.mmcr.2018.11.005. PMC 6290094. PMID 30560049.
9. Frías-De-León MG, Martínez-Herrera E, Atoche-Díéguez CE, Cespón JL, Uribe B, Arenas R, et al. Molecular identification of isolates of the *Trichophyton mentagrophytes* complex. Int J Med Sci. 2020 Jan 1;17(1):45-52. doi: 10.7150/ijms.35173. PMID: 31929737; PMCID: PMC6945559.
10. Kano R, Kimura U, Kakurai M, Hiruma J, Kamata H, Suga Y, et al. *Trichophyton indotinea* sp. nov.: A New Highly Terbinafine-Resistant Anthropophilic Dermatophyte Species. Mycopathologia. 2020 Dec;185(6):947-958. doi: 10.1007/s11046-020-00455-8. Epub 2020 May 24. PMID: 32449054.
11. Nenoff P, Verma SB, Uhrlaß S, Burmester A, Gräser Y. A clarion call for preventing taxonomical errors of dermatophytes using the example of the novel *Trichophyton mentagrophytes* genotype VIII uniformly isolated in the Indian epidemic of superficial dermatophytosis. Mycoses. 2019 Jan;62(1):6-10. doi: 10.1111/myc.12848. Epub 2018 Oct 1. PMID: 30187579.

12. Gallo JG, Woods M, Graham RM, Jennison AV. A severe transmissible Majocchi's granuloma in an immunocompetent returned traveler. *Med Mycol Case Rep.* 2017 Jul 6;18:5-7. doi:10.1016/j.mmcr.2017.07.003. PMC 5502794. PMID: 28725545.
13. Larionov MD, Chilina GA, Bogdanova TV, Pchelin IM. Rare clinical case of tinea corporis and tinea cruris due to *Trichophyton mentagrophytes* of exotic genotype. *Problemy Medicinskoj Mikologii.* 2017;19(2):95.
14. Bakare RA, Oni AA, Umar US, Adewole IF, Shokunbi WA, Fayemiwo SA, et al. Pattern of sexually transmitted diseases among commercial sex workers (CSWs) in Ibadan, Nigeria. *Afr J Med Med Sci.* 2002 Sep;31:243-7. PMID: 12751565.
15. Mølenberg D, Deleuran M, Sommerlund M. Connubial tinea gladiatorum due to *Trichophyton mentagrophytes*. *Mycoses.* 2010 Nov;53(6):533-4. <https://doi.org/10.1111/j.1439-0507.2009.01734>. PMID: 19682313.
16. Jabet A, Delli  re S, Seang S, Chermak A, Schneider L, Chiarabini T, et al. Sexually Transmitted *Trichophyton mentagrophytes* Genotype VII Infection among Men Who Have Sex with Men. *Emerg Infect Dis.* 2023 Jul;29(7):1411-1414. doi: 10.3201/eid2907.230025. PMID: 37347803; PMCID: PMC10310379.
17. Xiao C, Wang J, Liao Z, Huang Y, Ji Q, Liu Y, et al. Assessment of the mechanism of drug resistance in *Trichophyton mentagrophytes* in response to various substances. *BMC Genomics.* 2021 Apr 7;22(1):250. doi: 10.1186/s12864-021-07520-6. Erratum in: *BMC Genomics.* 2021 May 19;22(1):365. doi: 10.1186/s12864-021-07630-1. PMID: 33827426; PMCID: PMC8028809.
18. Fattahi A, Shirvani F, Ayatollahi A, Rezaei-Matehkolaei A, Badali H, Lotfali E, et al. Multidrug-resistant *Trichophyton mentagrophytes* genotype VIII in an Iranian family with generalized dermatophytosis: report of four cases and review of literature. *Int J Dermatol.* 2021 Jun;60(6):686-92. doi: 10.1111/ijd.15226. Epub 2020 Oct 13. PMID: 33047849.
19. Siopi M, Efstatithiou I, Theodoropoulos K, Pournaras S, Meletiadis J. Molecular Epidemiology and Antifungal Susceptibility of *Trichophyton* Isolates in Greece: Emergence of Terbinafine-Resistant *Trichophyton mentagrophytes* Type VIII Locally and Globally. *J Fungi (Basel).* 2021 May 27;7(6):419. doi: 10.3390/jof7060419. PMID: 34072049; PMCID: PMC8229535.
20. Page MJ, Moher D, Bossuyt PM, Mulrow CD, Tetzlaff JM, Chou R, et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. *BMJ.* 2021 Mar 29;372:n160. PMID: 33781993; PMCID: PMC8005925.
21. Palmieri V, Colamesta V, La Torre G. Evaluation of methodological quality of studies. *Senses Sci.* 2016;3(3):235-241. <https://doi.org/10.14616/sands-2016-3-235241>.
22. Kupsch C, Czaika VA, Deutsch C, Gr  ser Y. *Trichophyton mentagrophytes* - a new genotype of zoophilic dermatophyte causes sexually transmitted infections. *J Dtsch Dermatol Ges.* 2019 May;17(5):493-501. doi: 10.1111/ddg.13776. Epub 2019 Feb 18. PMID: 30775844.
23. Klinger M, Theiler M, Bosshard PP. Epidemiological and clinical aspects of *Trichophyton mentagrophytes*/Trichophyton interdigitale infections in the Zurich area: a retrospective study using genotyping. *J Eur Acad Dermatol Venereol.* 2021 Apr;35(4):1017-1025. doi: 10.1111/jdv.17106. Epub 2021 Feb 3. PMID: 33411941.
24. Caplan AS, Sikora M, Strome A, Akoh CC, Otto C, Chaturvedi S, et al. Potential Sexual Transmission of *Tinea Pubogenitalis* From TMVII. *JAMA Dermatol.* 2024 Jul 1;160(7):783-785. doi: 10.1001/jamadermatol.2024.1430. PMID: 38837127.
25. Luchsinger I, Bosshard PP, Kasper RS, Reinhardt D, Lautenschlager S. *Tinea genitalis*: a new entity of sexually transmitted infection? Case series and review of the literature. *Sex Transm Infect.* 2015 Nov 9;91(7):493-496. doi:10.1136/sextrans-2015-052036. Epub 2015 Jun 12. PMID: 26071391; PMCID: PMC4680168.
26. Mohammadi LZ, Shams-Ghahfarokhi M, Salehi Z, Razzaghi-Abyaneh M. Increased terbinafine resistance among clinical genotypes of *Trichophyton mentagrophytes*/T. interdigitale species complex harboring squalene epoxidase gene mutations. *J Mycol Med.* 2024 Jun 16;34(3):101495. doi: 10.1016/j.mycmed.2024.101495. Epub ahead of print. PMID: 38896927.

Corresponding author: Luigi Cofone, Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
e-mail: luigi.cofone@uniroma1.it