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Abstract 

Introduction. The periodic monitoring of Legionella in hospital water networks allows preventive measures to be taken to avoid 
the risk of legionellosis to patients and healthcare workers. 
Study design. The aim of the study is to standardize a method for predicting the risk of Legionella contamination in the water 
supply of a hospital facility, by comparing Machine Learning, conventional and combined models. 
Methods. During the period July 2021– October 2022, water sampling for Legionella detection was performed in the rooms of an 
Italian hospital pavilion (89.9% of the total number of rooms). Fifty-eight parameters regarding the structural and environmental 
characteristics of the water network were collected. Models were built on 70% of the dataset and tested on the remaining 30% to 
evaluate accuracy, sensitivity, and specificity. 
Results. A total of 1,053 water samples were analyzed and 57 (5.4%) were positive for Legionella. Of the Machine Learning models 
tested, the most efficient had an input layer (56 neurons), hidden layer (30 neurons), and output layer (two neurons). Accuracy 
was 93.4%, sensitivity was 43.8%, and specificity was 96%. The regression model had an accuracy of 82.9%, sensitivity of 20.3%, 
and specificity of 97.3%. The combination of the models achieved an accuracy of 82.3%, sensitivity of 22.4%, and specificity of 
98.4%. The most important parameters that influenced the model results were the type of water network (hot/cold), the replacement 
of filter valves, and atmospheric temperature. Among the models tested, Machine Learning obtained the best results in terms of 
accuracy and sensitivity. 
Conclusions. Future studies are required to improve these predictive models by expanding the dataset using other parameters 
and other pavilions of the same hospital.
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Introduction

Legionella are Gram-negative bacteria that can 
colonize natural (e.g., rivers, lakes, and ponds) and 
artificial aquatic environments (e.g., drinking water 
systems, taps, faucets, showers, cooling towers, and 
fountains) (1). After individuals inhale contaminated 
aerosols, they can develop various clinical forms 
of legionellosis, such as a flu-like illness (Pontiac 
fever) or severe pneumonia known as Legionnaires’ 
disease (LD) (2). The disease can be of community 
or nosocomial origin. In recent years, nosocomial 
legionellosis has attracted particular attention because 
of the complexity of hospital water systems and the 
vulnerability of hospitalized patients, which can lead to 
serious consequences with a high mortality rate (3).

The World Health Organization proposed the Water 
Safety Plan (WSP) in 2004 and revised it in subsequent 
years to both organize and systematize drinking water 
management practices and ensure the applicability of 
these practices to drinking water quality management 
(4,5). Additionally, according to the new European 
Drinking Water Directive (6) transposed in Italy on 
18 February 2023 (7), Legionella is a microbiological 
parameter to be detected in the water supply of health 
and community facilities. 

In recent years, LD cases have increased overall, 
probably because of the systematic surveillance 
developed in many countries and improved testing 
in microbiology laboratories (8-10). The Centers for 
Disease Control and Prevention (CDC) has estimated 
that 90% of outbreaks could be prevented through safe 
water management programs (11).

The ability to colonize various natural and 
artificial ecosystems makes the eradication of these 
microorganisms difficult (12). Several factors favor 
the proliferation of Legionella, including a water 
temperature between 20°C and 50°C (13) and the 
stagnation of water inside pipes (14). Moreover, 
Legionella can parasitize freshwater protozoa and 
persist in biofilm, thereby allowing for greater 
resistance to environmental factors and remediation 
treatments (12). Some authors (15) have highlighted 
the importance of chemical parameters (hardness, 
free chlorine concentration, pH, and trace element 
concentrations) and the material of water system 
pipes. For example, copper pipes reduce the risk of 
water colonization because of the natural antimicrobial 
effect of copper (16). More recently, competition with 
Pseudomonas aeruginosa has also been considered. 
Indeed, some researchers have reported that the 
presence of P. aeruginosa in the water supply is 

inversely correlated with the presence of Legionella 
(17). 

Water is not free from microorganisms and poorly 
managed water networks can be particularly vulnerable 
to Legionella (18). In healthcare facilities, the 
management of construction activities is particularly 
complicated because of the complexity and variability 
of the buildings (age and size, time since the last 
renovation, number of floors, and number of rooms 
and water points/floors), which are often outdated 
and no longer suitable for current organizational and 
healthcare practices (19).

To date, conventional statistical methods and 
models for Legionella risk in water networks have 
been limited and often difficult to implement in 
practice (20-22). 

In recent years, innovative artificial intelligence 
(AI) models, such as machine learning (ML)/deep 
learning (DL), have achieved tremendous success 
worldwide in various fields (23,24); however, there 
is still little scientific evidence on their application to 
risk caused by Legionella (25-27).

The term “artificial intelligence” was coined in the 
1950s and describes a machine’s capacity, particularly 
computer systems, to conduct operations that ordinarily 
require human intellect (e.g., visual perception, speech 
recognition, and decision-making) (28,29). ML is a 
branch of AI that uses algorithms to give machines 
the ability to learn from data (input) and improve over 
time without human help. DL is a subfield of ML and 
AI that uses artificial neural networks to simulate the 
cellular behavior of the human brain and learns from 
its experience. However, a massive volume of data 
needs to be provided at input (30).

The aim of the present study is to standardize 
a method for predicting the risk of Legionella 
contamination in the water supply of a hospital 
facility, by comparing ML, conventional models, and 
combined models.

Methods

Study design
The study was conducted in an Italian hospital, 

structured into several pavilions, which has 
implemented a WSP since October 2020. For this 
purpose, a systematic and organized water network 
monitoring process was planned, with associated 
differentiated maintenance interventions, derived 
from the analysis of the risk of water contamination 
by microorganisms, including Legionella.
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For this study, a seven-floor pavilion (12,800 
m2) organized into two wings (north and south) was 
considered because of the plant scenario and the 
related maintenance interventions. One of the wings 
underwent a complete renovation of the network 
in the period March–June 2021, whereas the other 
wing did not undergo any extraordinary maintenance 
interventions. The pavilion had 396 rooms equipped 
with taps, showers, and bidets. The water network 
developed into five lines and 33 risers, characterized 
by a very varied structure in terms of installations 
(e.g., some sections were underground and others 
above ground, the presence of dead-end branches) 
and the characteristics of the water pipes (e.g., type of 
material, presence of filters, mixers). Technical data 
provided by the hospital’s technical equipment and 
microbiological data were collected and analyzed to 
build predictive models of Legionella contamination 
in the water supply. 

Legionella survey
Between July 2021 and October 2022, 356 of 

the 396 rooms (89.9%) present in the pavilion (99% 
confidence level, 2.2% confidence interval) were 
monitored for Legionella detection. A total of 1,053 
water samples were analyzed (all samples for the wing 
of the pavilion under renovation were taken after the 
extraordinary maintenance intervention).

Water samples (1 L) were collected in sterile 
dark containers containing sodium thiosulphate 
pentahydrate (0.01%, w/v) to neutralize the chloride 
present in the water, transported to room temperature 
in isothermal bags, and analyzed within 24 hours 
according to current regulations (31,32). The water 
was filtered through a polycarbonate membrane with 
0.2-µm pores and a diameter of 47 mm (Millipore 
Corporation, Bedford, MA, USA), and then suspended 
in 10 mL of the same water sample and vortexed. 
Subsequently, 200 µL of each sample was seeded on 
plates containing Legionella selective agar (GVPC, 
Biolife Italiana Srl, Milan, Italy) and incubated at 
36°C ± 2°C for 7–10 days in a humid environment. 
Quantitative evaluation was expressed in colony-
forming units/liter (cfu/L). Suspect colonies were 
subcultured on two Legionella BCYE agars (Biolife 
Italiana Srl, Milan, Italy) with and without L-cysteine. 
Colonies grown only on BCYE cysteine agar plates 
were considered to belong to the genus Legionella and 
were identified for confirmation in latex agglutination 
tests with polyvalent (Biolife Italiana Srl, Milan, 
Italy) and monovalent (Biogenetics Srl, Tokyo, Japan) 
antisera. 

Water samples containing < 50 cfu/L were 
considered negative (hereafter referred to as 0 
cfu/L).

Data collection
A total of 58 parameters relating to the structural 

and environmental characteristics of the water network 
and pavilion were studied, and are listed schematically 
below:

- structural parameters of the pavilion: floor and 
wings;

- infrastructural parameters of the water network up 
to the point of supply: length, location (underground 
and above ground), material of tube pipes (copper, 
steel, and multi-layer), diameters of tube pipes 
measured in mm (63.5, 50.8, 38.1, 31.75, 25.4, 19.05, 
12.7, 10.16, 8.128, 6.604, 5.08, 4.572, 4.064, 3.556, 
3.302, and 3.048), average pipe diameter, number 
of diameter changes along the water mains route, 
number of network lines, number of risers, type of 
network (hot/cold), presence of dead-end branches, 
and presence of corners along the water mains route 
(both total and partial);

- parameters of the water supply points in the 
rooms: number of water supply points used and not 
used, and type (tap, shower, and bidet);

- parameters of water network maintenance: total 
network renovation (Yes/No), days since renovation, 
replacement of filter valves (Yes/No) and days 
since the last replacement, replacement of aerator 
filters (Yes/No) and days since the last replacement, 
replacement of mixers (Yes/No) and days since the 
last replacement, replacement of shower heads (Yes/
No) and days since the last replacement, replacement 
of flexible hoses (Yes/No) and days since the last 
replacement, disinfection of the network with sodium 
hypochlorite for two days (Yes/No) and days since 
the last disinfection, and presence of an absolute filter 
at the distribution point (Yes/No) and days since the 
installation of the absolute filter;

- water sampling parameters: water temperature 
at the time of sampling, pre- or post-flush sampling 
method, and detection (positive/negative) and load 
(cfu/L) of Legionella.

- climatic parameters: month of sampling, 
average air temperature on the day of sampling, and 
temperature range recorded on the day of sampling 
(33).

Statistical analysis
The development of the models involved the 

following steps:
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• To make the descriptive parameters comparable 
with the alphanumeric parameters and include them 
in the analysis, the ordinal coding technique was used 
(34).

• The data obtained from the 1,053 water samples 
analyzed were pre-randomized.

• The independent parameters were normalized to 
a single comparable unit of measurement (range 0–1) 
using the following formula (35):

Xn= (Xnn−Min(X))/Max(X)−Min(X),

where:

Xn is the normalized value of each variable for record n
Xnn is the non-normalized value of each variable for record n
Max(X) is the maximum value of each variable
Min(X) is the minimum value of each variable.

The entire dataset was divided into two parts: 70% 
to train the model and 30% to evaluate the quality 
of the model (testing phase) (36). Furthermore, to 
test the robustness of the model another partition of 
the dataset was used: 50% for training and 50% for 
testing (37).

Development of predictive models
A useful glossary table consisting of commonly used 

terms in predictive modeling can be found in Table 1 
(38-44). 

Several ML/DL models were tested to predict the 
risk of Legionella contamination in the water network. 
All ML/DL models were developed considering the 
training dataset (70% and 50%). The number of hidden 
layers, number of neurons within each layer, and 

model training parameters (model training epochs, 
batch size, and validation split) were modified. 

The purpose of these models was to understand 
which independent variables (n = 57) influence the 
dependent variable “Legionella detection (positive/
negative)”.

Each ML/DL model was supervised and adapted 
to solve classification problems (prediction of the 
Legionella sampling results, positive or negative). A 
bias neuron was added to each layer of the models to 
increase their effectiveness. The activation function 
for each layer was ReLU (Rectified Linear Unit); for 
the last level, which was a classification problem, 
softmax was considered (45,46).

For each model, the confusion matrix was calculated 
on 30% and 50% of the test dataset, which allowed 
us to understand how correctly the model was able to 
predict the sampling results compared with the real 
data present in the dataset. Through these confusion 
matrices, it was possible to define both the accuracy 
of the model, and its sensitivity and specificity (47).

Additionally, the R package Variable Importance Plots 
(VIP), which is a permutation based VI scoring method, 
was used to evaluate which factors most influenced the 
dependent variables within each model (44).

Poisson regression model 
To estimate which parameters can predict 

water contamination by Legionella, the inferential 
statistical model was tested on the dependent variable 
“Legionella load (cfu/L)” and the independent 
variables (n = 57) according to the methods used 
by other authors (48-50). The Poisson regression 

Table 1 - Glossary summary of common terminology in predictive modeling.

Term Definition

Neuron The basic element of a neural network, which connects toother neurons through transmitting 
data to each other (38)

Neural network It consists of many simple, connected processors called neurons, each producing a sequence 
of real-valued activations (39)

Bias neuron A weight parameter for an extra input whose activation is permanently set to +1 (40)

Hidden layer In an artificial neural network, this is defined as the layer between the input and output lay-
ers, where the result of their action cannot be directly observed (38)

epochs of learning Each repeated entry of the full set of training patterns (40)

batch size Hyperparameter of deep learning that controls the number of the training samples that are 
“fed” into the neural network before internal model parameters are updated (41)

validation split A set of data used to test the performance of the network during training, but not used for 
modifying the weights of the network (40)

Rectified Linear Input (ReLU) The activation function most frequently used followed by SoftMax for classification pro-
blems (42, 43)

permutation based VI scoring method It is a method to measure variable importance scores for the predictors in a model (44).
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model was developed (70% and 50% of the dataset) 
and tested (30% and 50% of the dataset) on the 
Legionella load detected in the samples (0 cfu/L in 
the case of a negative result). Subsequently, only 
those parameters/risk factors with a p-value < 0.05 
were considered to be statistically significant and 
included in the final model.

Predictions from the final Poisson regression model 
for each parameter analyzed in this study were used to 
calculate an overall risk score for Legionella positive 
outcomes using the following formula (50):

e (α+β1X1+ β2X2+...+ βkXk),

where:

α = intercept of the model;
β = coefficient of the regression model for each risk factor;
X = score of each risk factor.

ROC curve
The ROC curve was applied to the maintenance 

interventions of the water systems that were particularly 
relevant for the purposes of the forecasting models to 
determine the cut-off of days within which to perform 
subsequent maintenance interventions. R version 3.6.1 
was used to perform all statistical tests.

Results

Of the 1,053 water samples analyzed for Legionella, 
57 (5.4%) tested positive, of which 49 (86%) were 

Figure 1 - Machine learning model architecture for Legionella results.

Table 2 - Confusion matrix for the machine learning model for Legionella detection

Predictive results: positive Predictive results: negative Total real results

Real results: positive 7 12 19

Real results: negative 9 288 297

Total predictive results 16 300 316

for Legionella pneumophila (Lpn) serogroup (sg) 1, 
seven (12.3%) for Lpn sg 6, and one (1.7%) for Lpn 
sg 1+6. Regarding the detected concentration, 42 
(73.7%) samples had a load < 1,000 cfu/L, 14 (24.6%) 
between 1,000 and 10,000 cfu/L, and one (1.7%) > 
10,000 cfu/L. 

When randomized and divided between the training 
(70%, 737/1,053) and testing (30%, 316/1,053) 
datasets, the positive samples were fairly evenly 
distributed (5.2%, 38/737 vs 6%, 19/316 water 
samples respectively). Similarly, for the algorithms 
created and tested with a 50%-50% split between 
the training and testing datasets, the positive water 
samples were distributed with 5.7% (30/527) in the 
training and 5.1% in the testing dataset (27/526).

Machine learning model
Of all the models tested, the ML model with 70% 

of dataset for training and 30% for testing, proved to 
be the most efficient model for predicting Legionella 
sample results (positive/negative) (Figure 1) (51). It 
started with 57 input benchmarks (input layer) and 
had a single hidden layer of 30 neurons and an output 
layer of two neurons (one for positive sample results 
and one for negative sample results). All layers had a 
bias neuron to increase their effectiveness.

The model was trained on the 737 samples of the 
train dataset (70%) with the following parameters: 
epochs of learning = 200, batch size = 4, and validation 
split = 0.6. The trained model, checked on 316 samples 
of the test dataset (30%), yielded the results in the 
confusion matrix shown in Table 2.
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Figure 2 - Graphical representation of the importance of each parameter examined in the accuracy of the machine learning model.

Legend: 1. Type of water network (hot/cold), 2. water temperature at the time of sampling, 3. percentage of the water network with a 6.604 mm pipe diameter, 4. percentage 
of the underground water network, 5. number of days from the last filter valve replacement to the day of sampling, 6. aerator filter replacement (Yes/No), 7. number of days 
since the last disinfection of the water network with sodium hypochlorite for two days, 8. percentage of the water network with a 31.75 mm pipe diameter, 9. days since 
the last replacement of flexible hoses, 10. percentage of the above ground network, 11. replacement of flexible hoses (Yes/No), 12. length of the water network, 13. Total 
restructuring of the water network (Yes/No), 14. number of dead legs along the route, 15. total number of corners of the water network along the way , 16. replacement 
of filter valves (Yes/No), 17. days since the last shower head replacement to the day of sampling, 18. number of days since the total water network renovation, 19. mean 
atmospheric temperature on the day of sampling, 20. average tube pipe diameter, 21. percentage of the network with a 8.128 mm pipe diameter, 22. mixer replacement 
(Yes/No), 23. days since the last mixer replacement, 24. floor, 25. month of water sampling, 26. presence of an absolute filter at the point of use (Yes/No), 27. percentage 
of the water network with a 63.5 mm pipe diameter, 28. type of point of use (tap, shower, and bidet), 29. number of days since the last replacement of aerator filters to the 
day of sampling, 30. replacement of shower heads (Yes/No), 31. number of water delivery points in the room, 32. number of days since the installation of the absolute 
filter to the day of sampling, 33. percentage of the water network with a 12.7 mm pipe diameter, 34. percentage of the water network with a 3.556 mm pipe diameter, 
35. number of unusable water delivery points in the room, 36. temperature range registered on the day of sampling, 37. percentage of the water network with a 4.572 
mm pipe diameter, 38. percentage of the water system with 3.302 mm pipes, 39. percentage of the water system with 4.064 mm pipes, 40. sampling methods pre- or 
post-flushing, 41. percentage of the water system with 5.08 mm pipes, 42. wing, 43. percentage of the copper network, 44. percentage of the steel network, 45. number 
of water network risers, 46. percentage of the water mains with a 38.1 mm pipe diameter, 47. percentage of the water mains with a 3.048 mm pipe diameter, 48. number 
of diameter changes along the way, 49. percentage of multi-layer water pipes, 50. percentage of the water mains with a 19.05 mm pipe diameter, 51.number of corners 
along the water mains route (partial) 52. water network line, 53. percentage of the water system with 5.08 mm pipes, 54. percentage of the water system with 25.4 mm 
pipes, 55. percentage of the water system with 50.8 mm pipes, 56. percentage of the water system with 10.16 mm pipes, 57. disinfection of the network with sodium 
hypochlorite (continuous hyperchlorination) for two days (Yes/No).
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The ML model had a prediction accuracy of 93.4% 
(295/316), with a sensitivity of 43.8% (7/16) and 
specificity of 96% (288/300).

The VIP package of R was applied to the model to 
determine which parameters had the greatest influence 
on the accuracy of the model. The results were shown 
in Figure 2.

From our data, it appears that some parameters, 
such as 1. type of water network, hot/cold, 2. water 
temperature at time of sampling, and 3. percentage 
of the water network with a 6.604 mm pipe diameter, 
had great importance in the model in a directly 
proportional sense (e.g., when the temperature of the 
water increased, the risk of Legionella contamination 
also increased). Other parameters, such as 55. 
percentage of the water system with 50.8 mm pipes, 
56. percentage of the water system with 10.16 mm 
pipes, and 57. disinfection of the network with sodium 
hypochlorite for two days), were very important, but in 
an inversely proportional sense (e.g., as the percentage 
of pipes with a diameter of 10.16 mm or 50.8 mm 
that reached the point of supply increased, the risk of 
Legionella contamination decreased).

Table 3 - Poisson regression model applied to the Legionella load (cfu/L).

β (eβ−1) = RR (%) p-value
Intercept -0.10230 < 0.0001*

Floor of the pavilion 0.13358 14.3 < 0.0001*

Hot/cold water network 0.10323 10.9 < 0.0001*

Mean atmospheric temperature on the day of sampling 0.09117 9.5 < 0.0001*

Atmospheric temperature range on the day of sampling -0.12797 -12.0 < 0.0001*

Days since the last replacement of the filter valves 0.12782 13.6 < 0.0001*

*p < 0.05 statistically significant

Table 4 - Confusion matrix for the Poisson regression model.

Predictive results:
positive

Predictive results:
negative

Total real Results

Real results: positive 12 7 19

Real results: negative 47 250 297

Total predictive results 59 257 316

Table 5 - Confusion matrix for the machine learning model + Poisson regression model.

Predictive results:
positive

Predictive results:
negative

Total real Results

Real results: positive 15 4 19

Real results: negative 52 245 297

Total predictive results 67 249 316

Poisson regression model
Table 3 shows the parameters that were statistically 

significant in influencing the best Poisson regression 
model applied to the Legionella load (training dataset 
70%). Some parameters had a directly proportional 
influence, whereas others were inversely proportional 
(i.e., for each degree increase in the atmospheric 
temperature range on the day of sampling, the relative 
risk of Legionella contamination decreased by 12% 
in terms of the load).

Testing the model on the test dataset (30%) yielded 
the results shown in Table 4. The Poisson regression 
model had a prediction accuracy of 82.9% (262/316), 
with a sensitivity of 20.3% (12/59) and specificity of 
97.3% (250/257).

The combination of the two models, where at least 
one of the two found positive predictions, obtained 
the results in Table 5. The combined model had 
a prediction accuracy of 82.3% (260/316), with a 
sensitivity of 22.4% (15/67) and specificity of 98.4% 
(245/249).
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ROC curve
Considering the importance of the parameter 

“days since the last replacement of filter valves” by 
both models (Figure 2 and Table 2), the ROC curve 
(Figure 3) was applied to compare days from the 
last replacement with the result of Legionella in the 
sampling day.

The ROC curve showed that the ideal cut-off, 
beyond which 90% of the Legionella samples tested 
positive, was 44 days after the last maintenance 
intervention.

Discussion

Current AI tools are increasingly advancing, 
particularly ML and DL techniques, and have been 
applied in many areas of medicine, such as providing 
health information, making medical diagnoses, and 
predicting a patient’s risk of future complications (52). 
Our study is one of the few in the field that analyzes 
a large number of parameters (n = 57) to predict 
Legionella contamination of a water supply. It is also 
the first to combine two types of statistical models 
(ML and Poisson regression).

Among the models tested (ML, Poisson regression, 
and ML combined with Poisson regression), ML 
obtained the best results both in terms of predictive 
accuracy (93.4%) and sensitivity (43.8%). Regarding 
specificity, the combination of the two models 
provided the best results (98.4%). The application 

of these innovative models ensured a more correct 
approach than traditional models for monitoring the 
water network, a factor that should not be overlooked 
when discussing healthcare facilities and vulnerable 
patients (53). Our results showed that these predictive 
models could be useful to improve the quality of 
management in complex hospital organizations, which 
represent a high-risk environment for LD transmission 
due to, for example, old plumbing systems, dead-end 
branches, lack of use of tap water (13).

The analysis of the factors that influence the 
prediction models yielded interesting results. By 
comparing the parameters that most influenced the 
presence (ML model) and load (Poisson Regression) 
of Legionella, a coincidence was found for some 
parameters: “type of water network (hot/cold water)” 
and “days from the last filter valve replacement to the 
day of sampling”.

The “type of water network (hot/cold)” was the 
first factor in the order of importance according to 
the ML model and was statistically significant for the 
Poisson regression model. In particular, the Poisson 
regression analysis showed that the cold water network 
presented the risk of greater contamination than the 
hot water network. The role of the type of water 
network in influencing the presence of Legionella 
has been confirmed in the scientific literature (54) 
and it is not uncommon to find Legionella in cold 
water networks (>20°C) (47, 55-57). This aspect 
needs to be studied in depth because only hypotheses 
can explain these results at present: it is possible that 

Figure 3 - ROC curves for the frequency of filter valve replacement and result of Legionella samples.
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the temperature of the cold water network does not 
reach temperatures < 20°C for various reasons (e.g., 
systems that are too superficial); that users obtain hot 
water more frequently, which reduces the flow of cold 
water; or that some buildings are closed in emergency 
cases, which causes the stagnation of the network and 
consequently greater contamination by Legionella 
(6,58). All these situations should be avoided in the 
management of the water network to reduce the risk 
of Legionella contamination.

The other parameter in common that most 
influenced the two models was the maintenance 
intervention for filter valve replacement (days 
from the last replacement to the day of sampling). 
Our results indicate that the valve filter becomes 
contaminated before the expiry date established by 
the manufacturer (90 days), therefore it is necessary 
to microbiologically monitor the filter to establish 
the duration of its validity. According to the Poisson 
regression model, each additional day that the filter 
valve was not replaced corresponded to a 13.6% 
increase in the risk of Legionella contamination of 
the water network. This confirmed the importance 
of establishing an appropriate maintenance program 
regarding filter valve replacement (59). 

The atmospheric temperature parameter analyzed in 
the predictive models was also particularly interesting. 
According to some authors (48,60,61), the ML model 
highlighted that, as the average daily atmospheric 
temperature increased, the presence of Legionella 
in the water network also increased. According to 
other authors (62,63), the Poisson regression model 
revealed that the average atmospheric temperature had 
a trend directly proportional to the risk of increased 
Legionella load. 

The ML model highlighted how the diameter of the 
water pipes also influences the presence of Legionella: 
overall, as the diameter increased, the presence of 
Legionella decreased. Other authors (64-68) have 
shown that the diameter of the pipes (including the 
water flow) can influence the formation of biofilm, 
which is widely considered to be the ideal habitat 
for the proliferation of Legionella. Our results could 
be influenced by some limitations of this study. For 
example, we did not consider the extent, presence of 
biofilms and/or other competing microorganisms such 
as Pseudomonas aeruginosa. Furthermore, we found 
that continuous disinfection with sodium hypochlorite 
was a parameter associated with the presence of 
Legionella because it was performed when a high 
microbial load was present in the water samples. 
Therefore, we believe that the application of these 

predictive models can be improved by expanding the 
number of parameters to be studied.

In addition, the lack of sensitivity could probably 
be due to the low number of positive samples, which 
do not allow the algorithm to adapt perfectly to the 
variation in risk of Legionella contamination at each 
individual water supply point. For this reason, we 
intend to extend the study to other pavilions of the 
same hospital to increase the dataset. This would 
improve the performance of the ML/DL models on the 
one hand and increase the test sensitivity on the other 
(69). Another method to increase the sensitivity of the 
model may be to eliminate the independent variables 
that least influence the development of the model. 
These “pruning” techniques have been developed 
recently and several authors have shown that they often 
lead to improved model performance (70,71). 

Conclusions

In this study, we have shown that the application 
of artificial intelligence methods to aqueous matrices 
can improve the modeling of water contamination 
compared to classical statistical analysis.

Some recommendations arising from the main 
findings are summarized below:

• check and maintain the cold water temperature 
<20°C, because it can present a greater risk of Legionella 
contamination than the hot water network;

• check the expiry date of the valve filter, as it may 
become contaminated before the expiry date;

• monitor the water network, especially during the 
hottest periods, as the average atmospheric temperature 
favors the risk of Legionella contamination.

In accordance with the new European directive 
2020/2184, predictive models would allow a rational 
choice for the control and prevention of water 
contamination (e.g. remediation systems) and a better 
management of the risk of waterborne diseases in 
terms of time and cost.
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Riassunto

Machine Learning vs. modelli di regressione per prevedere 
il rischio di contaminazione da Legionella in una rete idrica 
ospedaliera

Introduzione. Il monitoraggio periodico per rilevare la presenza 
di Legionella nelle reti idriche ospedaliere consente di adottare 
misure preventive per evitare il rischio di legionellosi in pazienti e 
operatori sanitari.

Disegno dello studio. Scopo dello studio è standardizzare un 
metodo per prevedere il rischio di contaminazione da Legionella 
nella rete idrica di una struttura ospedaliera, confrontando modelli 
di Machine Learning con modelli convenzionali e combinati.

Metodi. Nel periodo luglio 2021 – ottobre 2022 la ricerca di 
Legionella è stata effettuata in campioni di acqua prelevati in 356 
stanze presenti in un padiglione ospedaliero italiano. Sono stati esa-
minati cinquantotto parametri riguardanti le caratteristiche strutturali 
e ambientali della rete idrica. I modelli sono stati costruiti sul 70% 
del dataset e testati sul restante 30% per valutare l’accuratezza, la 
sensibilità e la specificità.

Risultati. Sono stati analizzati 1.053 campioni di acqua, di cui 
57 (5,4%) positivi per Legionella. Dei modelli Machine Learning 
testati, il più efficiente aveva uno strato di input (56 neuroni), uno 
strato nascosto (30 neuroni) e uno strato di output (due neuroni). 
L’accuratezza è risultata pari al 93,4%, la sensibilità al 43,8% e la 
specificità al 96%. Il modello di regressione ha rilevato un’accu-
ratezza dell’82,9%, una sensibilità del 20,3% e una specificità del 
97,3%. La combinazione dei modelli ha raggiunto un’accuratezza 
dell’82,3%, una sensibilità del 22,4% e una specificità del 98,4%. I 
parametri più importanti che hanno influenzato i risultati del modello 
sono stati il tipo di rete idrica (acqua calda/fredda), la sostituzione 
delle valvole dei filtri e la temperatura atmosferica. Tra i modelli 
testati, Machine Learning ha ottenuto i migliori risultati in termini 
di accuratezza e sensibilità.

Conclusioni. Sono necessari ulteriori studi per migliorare questi 
modelli predittivi, ampliando il dataset con l’inserimento di altri 
parametri e di altri padiglioni dello stesso ospedale.
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