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Abstract

Introduction. The periodic monitoring of Legionella in hospital water networks allows preventive measures to be taken to avoid
the risk of legionellosis to patients and healthcare workers.

Study design. The aim of the study is to standardize a method for predicting the risk of Legionella contamination in the water
supply of a hospital facility, by comparing Machine Learning, conventional and combined models.

Methods. During the period July 202 1— October 2022, water sampling for Legionella detection was performed in the rooms of an
Italian hospital pavilion (89.9% of the total number of rooms). Fifty-eight parameters regarding the structural and environmental
characteristics of the water network were collected. Models were built on 70% of the dataset and tested on the remaining 30% to
evaluate accuracy, sensitivity, and specificity.

Results. A total of 1,053 water samples were analyzed and 57 (5.4%) were positive for Legionella. Of the Machine Learning models
tested, the most efficient had an input layer (56 neurons), hidden layer (30 neurons), and output layer (two neurons). Accuracy
was 93.4%, sensitivity was 43.8%, and specificity was 96%. The regression model had an accuracy of 82.9%, sensitivity of 20.3%,
and specificity of 97.3%. The combination of the models achieved an accuracy of 82.3%, sensitivity of 22.4%, and specificity of
98.4%. The most important parameters that influenced the model results were the type of water network (hot/cold), the replacement
of filter valves, and atmospheric temperature. Among the models tested, Machine Learning obtained the best results in terms of
accuracy and sensitivity.

Conclusions. Future studies are required to improve these predictive models by expanding the dataset using other parameters
and other pavilions of the same hospital.
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Introduction

Legionella are Gram-negative bacteria that can
colonize natural (e.g., rivers, lakes, and ponds) and
artificial aquatic environments (e.g., drinking water
systems, taps, faucets, showers, cooling towers, and
fountains) (1). After individuals inhale contaminated
aerosols, they can develop various clinical forms
of legionellosis, such as a flu-like illness (Pontiac
fever) or severe pneumonia known as Legionnaires’
disease (LD) (2). The disease can be of community
or nosocomial origin. In recent years, nosocomial
legionellosis has attracted particular attention because
of the complexity of hospital water systems and the
vulnerability of hospitalized patients, which can lead to
serious consequences with a high mortality rate (3).

The World Health Organization proposed the Water
Safety Plan (WSP) in 2004 and revised it in subsequent
years to both organize and systematize drinking water
management practices and ensure the applicability of
these practices to drinking water quality management
(4,5). Additionally, according to the new European
Drinking Water Directive (6) transposed in Italy on
18 February 2023 (7), Legionella is a microbiological
parameter to be detected in the water supply of health
and community facilities.

In recent years, LD cases have increased overall,
probably because of the systematic surveillance
developed in many countries and improved testing
in microbiology laboratories (8-10). The Centers for
Disease Control and Prevention (CDC) has estimated
that 90% of outbreaks could be prevented through safe
water management programs (11).

The ability to colonize various natural and
artificial ecosystems makes the eradication of these
microorganisms difficult (12). Several factors favor
the proliferation of Legionella, including a water
temperature between 20°C and 50°C (13) and the
stagnation of water inside pipes (14). Moreover,
Legionella can parasitize freshwater protozoa and
persist in biofilm, thereby allowing for greater
resistance to environmental factors and remediation
treatments (12). Some authors (15) have highlighted
the importance of chemical parameters (hardness,
free chlorine concentration, pH, and trace element
concentrations) and the material of water system
pipes. For example, copper pipes reduce the risk of
water colonization because of the natural antimicrobial
effect of copper (16). More recently, competition with
Pseudomonas aeruginosa has also been considered.
Indeed, some researchers have reported that the
presence of P. aeruginosa in the water supply is
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inversely correlated with the presence of Legionella
(17).

Water is not free from microorganisms and poorly
managed water networks can be particularly vulnerable
to Legionella (18). In healthcare facilities, the
management of construction activities is particularly
complicated because of the complexity and variability
of the buildings (age and size, time since the last
renovation, number of floors, and number of rooms
and water points/floors), which are often outdated
and no longer suitable for current organizational and
healthcare practices (19).

To date, conventional statistical methods and
models for Legionella risk in water networks have
been limited and often difficult to implement in
practice (20-22).

In recent years, innovative artificial intelligence
(AI) models, such as machine learning (ML)/deep
learning (DL), have achieved tremendous success
worldwide in various fields (23,24); however, there
is still little scientific evidence on their application to
risk caused by Legionella (25-27).

The term “artificial intelligence” was coined in the
1950s and describes a machine’s capacity, particularly
computer systems, to conduct operations that ordinarily
require human intellect (e.g., visual perception, speech
recognition, and decision-making) (28,29). ML is a
branch of Al that uses algorithms to give machines
the ability to learn from data (input) and improve over
time without human help. DL is a subfield of ML and
Al that uses artificial neural networks to simulate the
cellular behavior of the human brain and learns from
its experience. However, a massive volume of data
needs to be provided at input (30).

The aim of the present study is to standardize
a method for predicting the risk of Legionella
contamination in the water supply of a hospital
facility, by comparing ML, conventional models, and
combined models.

Methods

Study design

The study was conducted in an Italian hospital,
structured into several pavilions, which has
implemented a WSP since October 2020. For this
purpose, a systematic and organized water network
monitoring process was planned, with associated
differentiated maintenance interventions, derived
from the analysis of the risk of water contamination
by microorganisms, including Legionella.
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For this study, a seven-floor pavilion (12,800
m?) organized into two wings (north and south) was
considered because of the plant scenario and the
related maintenance interventions. One of the wings
underwent a complete renovation of the network
in the period March—June 2021, whereas the other
wing did not undergo any extraordinary maintenance
interventions. The pavilion had 396 rooms equipped
with taps, showers, and bidets. The water network
developed into five lines and 33 risers, characterized
by a very varied structure in terms of installations
(e.g., some sections were underground and others
above ground, the presence of dead-end branches)
and the characteristics of the water pipes (e.g., type of
material, presence of filters, mixers). Technical data
provided by the hospital’s technical equipment and
microbiological data were collected and analyzed to
build predictive models of Legionella contamination
in the water supply.

Legionella survey

Between July 2021 and October 2022, 356 of
the 396 rooms (89.9%) present in the pavilion (99%
confidence level, 2.2% confidence interval) were
monitored for Legionella detection. A total of 1,053
water samples were analyzed (all samples for the wing
of the pavilion under renovation were taken after the
extraordinary maintenance intervention).

Water samples (1 L) were collected in sterile
dark containers containing sodium thiosulphate
pentahydrate (0.01%, w/v) to neutralize the chloride
present in the water, transported to room temperature
in isothermal bags, and analyzed within 24 hours
according to current regulations (31,32). The water
was filtered through a polycarbonate membrane with
0.2-um pores and a diameter of 47 mm (Millipore
Corporation, Bedford, MA, USA), and then suspended
in 10 mL of the same water sample and vortexed.
Subsequently, 200 uL of each sample was seeded on
plates containing Legionella selective agar (GVPC,
Biolife Italiana Srl, Milan, Italy) and incubated at
36°C + 2°C for 7-10 days in a humid environment.
Quantitative evaluation was expressed in colony-
forming units/liter (cfu/L). Suspect colonies were
subcultured on two Legionella BCYE agars (Biolife
Italiana Srl, Milan, Italy) with and without L-cysteine.
Colonies grown only on BCYE cysteine agar plates
were considered to belong to the genus Legionella and
were identified for confirmation in latex agglutination
tests with polyvalent (Biolife Italiana Srl, Milan,
Italy) and monovalent (Biogenetics Stl, Tokyo, Japan)
antisera.
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Water samples containing < 50 cfu/L were
considered negative (hereafter referred to as 0
cfu/L).

Data collection

A total of 58 parameters relating to the structural
and environmental characteristics of the water network
and pavilion were studied, and are listed schematically
below:

- structural parameters of the pavilion: floor and
wings;

- infrastructural parameters of the water network up
to the point of supply: length, location (underground
and above ground), material of tube pipes (copper,
steel, and multi-layer), diameters of tube pipes
measured in mm (63.5, 50.8, 38.1, 31.75, 25.4, 19.05,
12.7, 10.16, 8.128, 6.604, 5.08, 4.572, 4.064, 3.556,
3.302, and 3.048), average pipe diameter, number
of diameter changes along the water mains route,
number of network lines, number of risers, type of
network (hot/cold), presence of dead-end branches,
and presence of corners along the water mains route
(both total and partial);

- parameters of the water supply points in the
rooms: number of water supply points used and not
used, and type (tap, shower, and bidet);

- parameters of water network maintenance: total
network renovation (Yes/No), days since renovation,
replacement of filter valves (Yes/No) and days
since the last replacement, replacement of aerator
filters (Yes/No) and days since the last replacement,
replacement of mixers (Yes/No) and days since the
last replacement, replacement of shower heads (Yes/
No) and days since the last replacement, replacement
of flexible hoses (Yes/No) and days since the last
replacement, disinfection of the network with sodium
hypochlorite for two days (Yes/No) and days since
the last disinfection, and presence of an absolute filter
at the distribution point (Yes/No) and days since the
installation of the absolute filter;

- water sampling parameters: water temperature
at the time of sampling, pre- or post-flush sampling
method, and detection (positive/negative) and load
(cfu/L) of Legionella.

- climatic parameters: month of sampling,
average air temperature on the day of sampling, and
temperature range recorded on the day of sampling
(33).

Statistical analysis
The development of the models involved the
following steps:
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¢ To make the descriptive parameters comparable
with the alphanumeric parameters and include them
in the analysis, the ordinal coding technique was used
(34).

e The data obtained from the 1,053 water samples
analyzed were pre-randomized.

e The independent parameters were normalized to
a single comparable unit of measurement (range 0—1)
using the following formula (35):

Xn= (Xnn—Min(X))/Max(X)-Min(X),

where:

Xn is the normalized value of each variable for record n

Xnn is the non-normalized value of each variable for record n
Max(X) is the maximum value of each variable

Min(X) is the minimum value of each variable.

The entire dataset was divided into two parts: 70%
to train the model and 30% to evaluate the quality
of the model (testing phase) (36). Furthermore, to
test the robustness of the model another partition of
the dataset was used: 50% for training and 50% for
testing (37).

Development of predictive models

A useful glossary table consisting of commonly used
terms in predictive modeling can be found in Table 1
(38-44).

Several ML/DL models were tested to predict the
risk of Legionella contamination in the water network.
All ML/DL models were developed considering the
training dataset (70% and 50%). The number of hidden
layers, number of neurons within each layer, and
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model training parameters (model training epochs,
batch size, and validation split) were modified.

The purpose of these models was to understand
which independent variables (n = 57) influence the
dependent variable “Legionella detection (positive/
negative)”.

Each ML/DL model was supervised and adapted
to solve classification problems (prediction of the
Legionella sampling results, positive or negative). A
bias neuron was added to each layer of the models to
increase their effectiveness. The activation function
for each layer was ReLLU (Rectified Linear Unit); for
the last level, which was a classification problem,
softmax was considered (45,46).

For each model, the confusion matrix was calculated
on 30% and 50% of the test dataset, which allowed
us to understand how correctly the model was able to
predict the sampling results compared with the real
data present in the dataset. Through these confusion
matrices, it was possible to define both the accuracy
of the model, and its sensitivity and specificity (47).

Additionally, the R package Variable Importance Plots
(VIP), which is a permutation based VI scoring method,
was used to evaluate which factors most influenced the
dependent variables within each model (44).

Poisson regression model

To estimate which parameters can predict
water contamination by Legionella, the inferential
statistical model was tested on the dependent variable
“Legionella load (cfu/L)” and the independent
variables (n = 57) according to the methods used
by other authors (48-50). The Poisson regression

Table 1 - Glossary summary of common terminology in predictive modeling.

Term

Definition

Neuron

The basic element of a neural network, which connects toother neurons through transmitting
data to each other (38)

Neural network

It consists of many simple, connected processors called neurons, each producing a sequence

of real-valued activations (39)

Bias neuron

A weight parameter for an extra input whose activation is permanently set to +1 (40)

Hidden layer

In an artificial neural network, this is defined as the layer between the input and output lay-

ers, where the result of their action cannot be directly observed (38)

epochs of learning

Each repeated entry of the full set of training patterns (40)

batch size

Hyperparameter of deep learning that controls the number of the training samples that are

“fed” into the neural network before internal model parameters are updated (41)

validation split

A set of data used to test the performance of the network during training, but not used for

modifying the weights of the network (40)

Rectified Linear Input (ReLU)
blems (42, 43)

The activation function most frequently used followed by SoftMax for classification pro-

permutation based VI scoring method

It is a method to measure variable importance scores for the predictors in a model (44).
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Figure 1 - Machine learning model architecture for Legionella results.

model was developed (70% and 50% of the dataset)
and tested (30% and 50% of the dataset) on the
Legionella load detected in the samples (0 cfu/L in
the case of a negative result). Subsequently, only
those parameters/risk factors with a p-value < 0.05
were considered to be statistically significant and
included in the final model.

Predictions from the final Poisson regression model
for each parameter analyzed in this study were used to
calculate an overall risk score for Legionella positive
outcomes using the following formula (50):

e (HBIX1+B2X2+..+ BKXK),
where:

a = intercept of the model;
[ = coefficient of the regression model for each risk factor;
X = score of each risk factor.

ROC curve

The ROC curve was applied to the maintenance
interventions of the water systems that were particularly
relevant for the purposes of the forecasting models to
determine the cut-off of days within which to perform
subsequent maintenance interventions. R version 3.6.1
was used to perform all statistical tests.

Results

Of the 1,053 water samples analyzed for Legionella,
57 (5.4%) tested positive, of which 49 (86%) were
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Input Layer
(57 neurons)

Hidden Layer
(30 neurons)

Output Layer
(2 neurons)

for Legionella pneumophila (Lpn) serogroup (sg) 1,
seven (12.3%) for Lpn sg 6, and one (1.7%) for Lpn
sg 1+6. Regarding the detected concentration, 42
(73.7%) samples had a load < 1,000 cfu/L, 14 (24.6%)
between 1,000 and 10,000 cfu/L, and one (1.7%) >
10,000 cfu/L.

When randomized and divided between the training
(70%, 737/1,053) and testing (30%, 316/1,053)
datasets, the positive samples were fairly evenly
distributed (5.2%, 38/737 vs 6%, 19/316 water
samples respectively). Similarly, for the algorithms
created and tested with a 50%-50% split between
the training and testing datasets, the positive water
samples were distributed with 5.7% (30/527) in the
training and 5.1% in the testing dataset (27/526).

Machine learning model

Of all the models tested, the ML model with 70%
of dataset for training and 30% for testing, proved to
be the most efficient model for predicting Legionella
sample results (positive/negative) (Figure 1) (51). It
started with 57 input benchmarks (input layer) and
had a single hidden layer of 30 neurons and an output
layer of two neurons (one for positive sample results
and one for negative sample results). All layers had a
bias neuron to increase their effectiveness.

The model was trained on the 737 samples of the
train dataset (70%) with the following parameters:
epochs of learning = 200, batch size =4, and validation
split=0.6. The trained model, checked on 316 samples
of the test dataset (30%), yielded the results in the
confusion matrix shown in Table 2.

Table 2 - Confusion matrix for the machine learning model for Legionella detection

Predictive results: positive

Predictive results: negative

Total real results

Real results: positive 7 12 19
Real results: negative 9 288 297
Total predictive results 16 300 316
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Figure 2 - Graphical representation of the importance of each parameter examined in the accuracy of the machine learning model.

Legend: 1. Type of water network (hot/cold), 2. water temperature at the time of sampling, 3. percentage of the water network with a 6.604 mm pipe diameter, 4. percentage
of the underground water network, 5. number of days from the last filter valve replacement to the day of sampling, 6. aerator filter replacement (Yes/No), 7. number of days
since the last disinfection of the water network with sodium hypochlorite for two days, 8. percentage of the water network with a 31.75 mm pipe diameter, 9. days since
the last replacement of flexible hoses, 10. percentage of the above ground network, 11. replacement of flexible hoses (Yes/No), 12. length of the water network, 13. Total
restructuring of the water network (Yes/No), 14. number of dead legs along the route, 15. total number of corners of the water network along the way , 16. replacement
of filter valves (Yes/No), 17. days since the last shower head replacement to the day of sampling, 18. number of days since the total water network renovation, 19. mean
atmospheric temperature on the day of sampling, 20. average tube pipe diameter, 21. percentage of the network with a 8.128 mm pipe diameter, 22. mixer replacement
(Yes/No), 23. days since the last mixer replacement, 24. floor, 25. month of water sampling, 26. presence of an absolute filter at the point of use (Yes/No), 27. percentage
of the water network with a 63.5 mm pipe diameter, 28. type of point of use (tap, shower, and bidet), 29. number of days since the last replacement of aerator filters to the
day of sampling, 30. replacement of shower heads (Yes/No), 31. number of water delivery points in the room, 32. number of days since the installation of the absolute
filter to the day of sampling, 33. percentage of the water network with a 12.7 mm pipe diameter, 34. percentage of the water network with a 3.556 mm pipe diameter,
35. number of unusable water delivery points in the room, 36. temperature range registered on the day of sampling, 37. percentage of the water network with a 4.572
mm pipe diameter, 38. percentage of the water system with 3.302 mm pipes, 39. percentage of the water system with 4.064 mm pipes, 40. sampling methods pre- or
post-flushing, 41. percentage of the water system with 5.08 mm pipes, 42. wing, 43. percentage of the copper network, 44. percentage of the steel network, 45. number
of water network risers, 46. percentage of the water mains with a 38.1 mm pipe diameter, 47. percentage of the water mains with a 3.048 mm pipe diameter, 48. number
of diameter changes along the way, 49. percentage of multi-layer water pipes, 50. percentage of the water mains with a 19.05 mm pipe diameter, 51.number of corners
along the water mains route (partial) 52. water network line, 53. percentage of the water system with 5.08 mm pipes, 54. percentage of the water system with 25.4 mm
pipes, 55. percentage of the water system with 50.8 mm pipes, 56. percentage of the water system with 10.16 mm pipes, 57. disinfection of the network with sodium
hypochlorite (continuous hyperchlorination) for two days (Yes/No).
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Table 3 - Poisson regression model applied to the Legionella load (cfu/L).

0. De Giglio et al.

B (ef—1) =RR (%) p-value
Intercept -0.10230 < 0.0001%*
Floor of the pavilion 0.13358 14.3 < 0.0001%*
Hot/cold water network 0.10323 10.9 < 0.0001%*
Mean atmospheric temperature on the day of sampling 0.09117 9.5 < 0.0001%*
Atmospheric temperature range on the day of sampling -0.12797 -12.0 < 0.0001%*
Days since the last replacement of the filter valves 0.12782 13.6 < 0.0001%*

*p < 0.05 statistically significant

Table 4 - Confusion matrix for the Poisson regression model.

Predictive results:

Predictive results: Total real Results

positive negative
Real results: positive 12 7 19
Real results: negative 47 250 297
Total predictive results 59 257 316

Table 5 - Confusion matrix for the machine learning model + Poisson regression model.

Predictive results:

Predictive results: Total real Results

positive negative
Real results: positive 15 4 19
Real results: negative 52 245 297
Total predictive results 67 249 316

The ML model had a prediction accuracy of 93.4%
(295/316), with a sensitivity of 43.8% (7/16) and
specificity of 96% (288/300).

The VIP package of R was applied to the model to
determine which parameters had the greatest influence
on the accuracy of the model. The results were shown
in Figure 2.

From our data, it appears that some parameters,
such as 1. type of water network, hot/cold, 2. water
temperature at time of sampling, and 3. percentage
of the water network with a 6.604 mm pipe diameter,
had great importance in the model in a directly
proportional sense (e.g., when the temperature of the
water increased, the risk of Legionella contamination
also increased). Other parameters, such as 55.
percentage of the water system with 50.8 mm pipes,
56. percentage of the water system with 10.16 mm
pipes, and 57. disinfection of the network with sodium
hypochlorite for two days), were very important, but in
an inversely proportional sense (e.g., as the percentage
of pipes with a diameter of 10.16 mm or 50.8 mm
that reached the point of supply increased, the risk of
Legionella contamination decreased).

Poisson regression model

Table 3 shows the parameters that were statistically
significant in influencing the best Poisson regression
model applied to the Legionella load (training dataset
70%). Some parameters had a directly proportional
influence, whereas others were inversely proportional
(i.e., for each degree increase in the atmospheric
temperature range on the day of sampling, the relative
risk of Legionella contamination decreased by 12%
in terms of the load).

Testing the model on the test dataset (30%) yielded
the results shown in Table 4. The Poisson regression
model had a prediction accuracy of 82.9% (262/316),
with a sensitivity of 20.3% (12/59) and specificity of
97.3% (250/257).

The combination of the two models, where at least
one of the two found positive predictions, obtained
the results in Table 5. The combined model had
a prediction accuracy of 82.3% (260/316), with a
sensitivity of 22.4% (15/67) and specificity of 98.4%
(245/249).
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Figure 3 - ROC curves for the frequency of filter valve replacement and result of Legionella samples.

ROC curve

Considering the importance of the parameter
“days since the last replacement of filter valves” by
both models (Figure 2 and Table 2), the ROC curve
(Figure 3) was applied to compare days from the
last replacement with the result of Legionella in the
sampling day.

The ROC curve showed that the ideal cut-off,
beyond which 90% of the Legionella samples tested
positive, was 44 days after the last maintenance
intervention.

Discussion

Current Al tools are increasingly advancing,
particularly ML and DL techniques, and have been
applied in many areas of medicine, such as providing
health information, making medical diagnoses, and
predicting a patient’s risk of future complications (52).
Our study is one of the few in the field that analyzes
a large number of parameters (n = 57) to predict
Legionella contamination of a water supply. It is also
the first to combine two types of statistical models
(ML and Poisson regression).

Among the models tested (ML, Poisson regression,
and ML combined with Poisson regression), ML
obtained the best results both in terms of predictive
accuracy (93.4%) and sensitivity (43.8%). Regarding
specificity, the combination of the two models
provided the best results (98.4%). The application

of these innovative models ensured a more correct
approach than traditional models for monitoring the
water network, a factor that should not be overlooked
when discussing healthcare facilities and vulnerable
patients (53). Our results showed that these predictive
models could be useful to improve the quality of
management in complex hospital organizations, which
represent a high-risk environment for LD transmission
due to, for example, old plumbing systems, dead-end
branches, lack of use of tap water (13).

The analysis of the factors that influence the
prediction models yielded interesting results. By
comparing the parameters that most influenced the
presence (ML model) and load (Poisson Regression)
of Legionella, a coincidence was found for some
parameters: “type of water network (hot/cold water)”
and “days from the last filter valve replacement to the
day of sampling”.

The “type of water network (hot/cold)” was the
first factor in the order of importance according to
the ML model and was statistically significant for the
Poisson regression model. In particular, the Poisson
regression analysis showed that the cold water network
presented the risk of greater contamination than the
hot water network. The role of the type of water
network in influencing the presence of Legionella
has been confirmed in the scientific literature (54)
and it is not uncommon to find Legionella in cold
water networks (>20°C) (47, 55-57). This aspect
needs to be studied in depth because only hypotheses
can explain these results at present: it is possible that
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the temperature of the cold water network does not
reach temperatures < 20°C for various reasons (e.g.,
systems that are too superficial); that users obtain hot
water more frequently, which reduces the flow of cold
water; or that some buildings are closed in emergency
cases, which causes the stagnation of the network and
consequently greater contamination by Legionella
(6,58). All these situations should be avoided in the
management of the water network to reduce the risk
of Legionella contamination.

The other parameter in common that most
influenced the two models was the maintenance
intervention for filter valve replacement (days
from the last replacement to the day of sampling).
Our results indicate that the valve filter becomes
contaminated before the expiry date established by
the manufacturer (90 days), therefore it is necessary
to microbiologically monitor the filter to establish
the duration of its validity. According to the Poisson
regression model, each additional day that the filter
valve was not replaced corresponded to a 13.6%
increase in the risk of Legionella contamination of
the water network. This confirmed the importance
of establishing an appropriate maintenance program
regarding filter valve replacement (59).

The atmospheric temperature parameter analyzed in
the predictive models was also particularly interesting.
According to some authors (48,60,61), the ML model
highlighted that, as the average daily atmospheric
temperature increased, the presence of Legionella
in the water network also increased. According to
other authors (62,63), the Poisson regression model
revealed that the average atmospheric temperature had
a trend directly proportional to the risk of increased
Legionella load.

The ML model highlighted how the diameter of the
water pipes also influences the presence of Legionella:
overall, as the diameter increased, the presence of
Legionella decreased. Other authors (64-68) have
shown that the diameter of the pipes (including the
water flow) can influence the formation of biofilm,
which is widely considered to be the ideal habitat
for the proliferation of Legionella. Our results could
be influenced by some limitations of this study. For
example, we did not consider the extent, presence of
biofilms and/or other competing microorganisms such
as Pseudomonas aeruginosa. Furthermore, we found
that continuous disinfection with sodium hypochlorite
was a parameter associated with the presence of
Legionella because it was performed when a high
microbial load was present in the water samples.
Therefore, we believe that the application of these
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predictive models can be improved by expanding the
number of parameters to be studied.

In addition, the lack of sensitivity could probably
be due to the low number of positive samples, which
do not allow the algorithm to adapt perfectly to the
variation in risk of Legionella contamination at each
individual water supply point. For this reason, we
intend to extend the study to other pavilions of the
same hospital to increase the dataset. This would
improve the performance of the ML/DL models on the
one hand and increase the test sensitivity on the other
(69). Another method to increase the sensitivity of the
model may be to eliminate the independent variables
that least influence the development of the model.
These “pruning” techniques have been developed
recently and several authors have shown that they often
lead to improved model performance (70,71).

Conclusions

In this study, we have shown that the application
of artificial intelligence methods to aqueous matrices
can improve the modeling of water contamination
compared to classical statistical analysis.

Some recommendations arising from the main
findings are summarized below:

e check and maintain the cold water temperature
<20°C, because it can present a greater risk of Legionella
contamination than the hot water network;

e check the expiry date of the valve filter, as it may
become contaminated before the expiry date;

e monitor the water network, especially during the
hottest periods, as the average atmospheric temperature
favors the risk of Legionella contamination.

In accordance with the new European directive
2020/2184, predictive models would allow a rational
choice for the control and prevention of water
contamination (e.g. remediation systems) and a better
management of the risk of waterborne diseases in
terms of time and cost.

Author Contributions: Conceptualization, O.D.G, EF. and M.T.M;
methodology, O.D.G, G.D, EE ET, V.S. and M.L.; data curation,
formal analysis, O.D.G, G.D, EF. and E.T.; writing - original draft,
0.D.G, FF, G.D. and M.T.M; writing - review & editing, M.L.,V.S.,
F.A., ET. and C.M.L; supervision, O.D.G, FF. and M.T.M.

All authors have read and agreed to the present version of the ma-
nuscript.

Funding: This research did not receive any external funding. It was
supported by university funds managed by Osvalda De Giglio.
Data Availability Statement: Not applicable.
Acknowledgments: We thank Edanz (https://www.edanz.com/ac)



Machine learning model to predict Legionella contamination

for editing a draft of this manuscript.

Conflicts of Interest: The authors declare that they have no known
competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Riassunto

Machine Learning vs. modelli di regressione per prevedere
il rischio di contaminazione da Legionella in una rete idrica
ospedaliera

Introduzione. Il monitoraggio periodico per rilevare la presenza
di Legionella nelle reti idriche ospedaliere consente di adottare
misure preventive per evitare il rischio di legionellosi in pazienti e
operatori sanitari.

Disegno dello studio. Scopo dello studio ¢ standardizzare un
metodo per prevedere il rischio di contaminazione da Legionella
nella rete idrica di una struttura ospedaliera, confrontando modelli
di Machine Learning con modelli convenzionali e combinati.

Metodi. Nel periodo luglio 2021 — ottobre 2022 la ricerca di
Legionella & stata effettuata in campioni di acqua prelevati in 356
stanze presenti in un padiglione ospedaliero italiano. Sono stati esa-
minati cinquantotto parametri riguardanti le caratteristiche strutturali
e ambientali della rete idrica. I modelli sono stati costruiti sul 70%
del dataset e testati sul restante 30% per valutare 1’accuratezza, la
sensibilita e la specificita.

Risultati. Sono stati analizzati 1.053 campioni di acqua, di cui
57 (5,4%) positivi per Legionella. Dei modelli Machine Learning
testati, il piu efficiente aveva uno strato di input (56 neuroni), uno
strato nascosto (30 neuroni) e uno strato di output (due neuroni).
L’accuratezza ¢ risultata pari al 93,4%, la sensibilita al 43,8% e la
specificita al 96%. 1l modello di regressione ha rilevato un’accu-
ratezza dell’82,9%, una sensibilita del 20,3% e una specificita del
97,3%. La combinazione dei modelli ha raggiunto un’accuratezza
dell’82,3%, una sensibilita del 22,4% e una specificita del 98,4%. 1
parametri pill importanti che hanno influenzato i risultati del modello
sono stati il tipo di rete idrica (acqua calda/fredda), la sostituzione
delle valvole dei filtri e la temperatura atmosferica. Tra i modelli
testati, Machine Learning ha ottenuto i migliori risultati in termini
di accuratezza e sensibilita.

Conclusioni. Sono necessari ulteriori studi per migliorare questi
modelli predittivi, ampliando il dataset con 'inserimento di altri
parametri e di altri padiglioni dello stesso ospedale.
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