"Smart PDOs: A System for Controlled Release in Facial Aesthetic"

Main Article Content

Víctor García Guevara


facial absorbable suspension sutures, polydioxanone, acetyl hexapeptide, argireline®, polydioxanone threads


Introduction: We propose a new facial lifting protocol using polydioxanone threads embedded in acetyl hexapeptide-8 (Argireline®). We assume that Argireline® (Arg) reinforces the effects of PDO threads, as it is a mimetic of botulinum toxin. Because the PDO suture is hydrolyzable, this assumption was analyzed by instrumental analysis. Objective: To demonstrate the capacity of the PDO suture as a system for the controlled release of acetyl hexapeptide-8. Materials and methods: Three segments of 1cm-long 21G PDO threads were immersed in 1 ml of Arg. PDO threads were observed under an optical, electron microscope at 24, 48, and 72 hours later. They also weighed before and after being soaked in Arg. Finally, employing UV-Vis spectroscopy, the release rate of Arg from the PDO suture was measured. Results: The electronic weighing revealed that the PDO thread enjoys capillarity by the peptide, doubling its weight every 24 hours. UV spectra revealed that PDO thread is a well-controlled release system for Arg, allowing its sustained release for 1 hour. Optical and electronic photomicrographs confirm the swelling of the PDO thread by absorbing Arg by its capillarity, but this hydrophilicity does not lead to its premature physical degradation. Conclusions: The PDO thread system with Arg is an intelligent bioactive system useful in facial harmonization. It employed recommended for clinical use to verify its superior lifting effect.  

Abstract 151 | PDF Downloads 105


1. Zamani, F.; Jahanmard, F.; Ghasemkhah, F.; Amjad-Iranagh, S.; Bagherzadeh, R.; Amani-Tehran, M.; Latifi, M. Nanofibrous and nanoparticle materials as drug-delivery systems. In Nanostructures for Drug Delivery; Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 239–270. DOI:10.1016/B978-0-323-46143-6.00007-5
2. Yu DG, Li JJ, Williams GR, Zhao M. Electrospun amorphous solid dispersions of poorly water-soluble drugs: A review. J Control Release. 2018 Dec 28; 292:91-110. doi: 10.1016/j.jconrel.2018.08.016. Epub 2018 Aug 14. PMID: 30118788.
3. Suárez-Vega DV, Velazco de Maldonado GJ, Ortíz RL, García-Guevara VJ, Miller-Kobisher B. In Vitro Degradation of Polydioxanone Lifting Threads in Hyaluronic Acid. J Cutan Aesthet Surg. 2019 Apr-Jun;12(2):145-148. doi: 10.4103/JCAS.JCAS_150_18. PMID: 31413486; PMCID: PMC6676806.
4. Padmakumar S, Joseph J, Neppalli MH, Mathew SE, Nair SV, Shankarappa SA, Menon D. Electrospun Polymeric Core-sheath Yarns as Drug Eluting Surgical Sutures. ACS Appl Mater Interfaces. 2016 Mar 23;8(11):6925-34. doi: 10.1021/acsami.6b00874. Epub 2016 Mar 11. PMID: 26936629.
5. Joseph J, Krishnan AG, Cherian AM, Rajagopalan B, Jose R, Varma P, Maniyal V, Balakrishnan S, Nair SV, Menon D. Transforming Nanofibers into Woven Nanotextiles for Vascular Application. ACS Appl Mater Interfaces. 2018 Jun 13;10(23):19449-19458. doi: 10.1021/acsami.8b05096. Epub 2018 Jun 4. PMID: 29792328.
6. Gladys Vidarte. Suturas. Dermatol Per [Internet]. 2001; 11 (Suppl 1): 7-12. Available from: https://sisbib.unmsm.edu.pe/bvrevistas/dermatologia/v11_sup1/suturas.htm
7. Medeiros, AM; Araújo-Filho I; Carvalho, MDF. Fios de sutura. J Surg Cl Res. [Internet]. 2016; 7 (2):74-86. DOI: https://doi.org/10.20398/jscr.v7i2.11437. Available from: https://periodicos.ufrn.br/jscr/article/view/11437
8. Hurtado J. Metodología de la Investigación. Guía para la comprensión holística de la ciencia. Quirón Ediciones. 4ta ed. 2010. Caracas-Venezuela
9. M Teresa Alcalde. Productos cosméticos con efecto Botox. Offarm vol. 23issue 7(2004)pp: 92-99 Published by Elsevier. Disponible en: https://www.elsevier.es/en-revista-offarm-4-articulo-productos-cosmeticos-con-efecto-botox-13064297
10. Gorouhi F, Maibach HI. Role of topical peptides in preventing or treating aged skin. Int J Cosmet Sci. 2009 Oct;31(5):327-45. doi: 10.1111/j.1468-2494.2009.00490.x. Epub 2009 Jun 30. PMID: 19570099.
11. Ruiz MA, Clares B, Morales ME, Cazalla, S. & Gallardo, V. Preparation and stability of cosmetic formulations with an anti-aging peptide. J Cosmet Sci 2007; 58:157–171. https://doi.org/10.1111/j.1468-2494.2007.00401_4.x (2007).
12. Blanes-Mira C, Clemente J, Jodas G, Gil A, Fernández-Ballester G, Ponsati B, Gutierrez L, Pérez-Payá E, Ferrer-Montiel A. A synthetic hexapeptide (Argireline) with antiwrinkle activity. Int J Cosmet Sci. 2002 Oct;24(5):303-10. doi: 10.1046/j.1467-2494.2002.00153.x. PMID: 18498523.
13. Blanes-Mira C, Merino JM, Valera E, Fernández-Ballester G, Gutiérrez LM, Viniegra S, Pérez-Payá E, Ferrer-Montiel A. Small peptides patterned after the N-terminus domain of SNAP25 inhibit SNARE complex assembly and regulated exocytosis. J Neurochem. 2004 Jan;88(1):124-35. doi: 10.1046/j.1471-4159.2003.02133.x. PMID: 14675156.
14. Kraeling ME, Zhou W, Wang P, Ogunsola OA. In vitro skin penetration of acetyl hexapeptide-8 from a cosmetic formulation. Cutan Ocul Toxicol. 2015 Mar; 34(1):46-52. doi: 10.3109/15569527.2014.894521. Epub 2014 Apr 22. PMID: 24754410.
15. Krishnan, G., Roberts, MS, Grice, J., Anissimov, YG, Moghimi, HR y Benson, HAE (2014). Permeación cutánea iontoforética de péptidos: una investigación sobre la influencia de las propiedades moleculares, las condiciones iontoforéticas y los parámetros de formulación. Drug Deliv. Transl. Res. 4, 222–232. doi: 10.1007 / s13346-013-0181-8
16. Ling MH, Chen MC. Disolver parches de microagujas de polímero para una administración transdérmica rápida y eficiente de insulina a ratas diabéticas. Acta biomaterialia. 2013; 9: 8952–8961. doi: 10.1016 / j.actbio.2013.06.029.
17. Katsumi H, Quan YS, Kamiyama F, Kusamori K, Sakane T, Yamamoto A. [Development of a novel transdermal delivery system of peptide and protein drugs using microneedle arrays]. Yakugaku Zasshi. 2014;134(1):63-7. Japanese. doi: 10.1248/yakushi.13-00221-3. PMID: 24389619.
18. Liu S, Jin MN, Quan YS, Kamiyama F, Katsumi H, Sakane T, Yamamoto A. The development and characteristics of novel microneedle arrays fabricated from hyaluronic acid, and their application in the transdermal delivery of insulin. J Control Release. 2012 Aug 10;161(3):933-41. doi: 10.1016/j.jconrel.2012.05.030. Epub 2012 May 22. PMID: 22634072.
19. Mohammed YH, Yamada M, Lin LL, Grice JE, Roberts MS, Raphael AP, Benson HA, Prow TW. Microneedle enhanced delivery of cosmeceutically relevant peptides in human skin. PLoS One. 2014 Jul 17; 9(7):e101956. doi: 10.1371/journal.pone.0101956. PMID: 25033398; PMCID: PMC4102460.
20. Luis, J., Park, E. J., Meyer, R. J. & Smith, N. B. Rectangular cymbal arrays for improved ultrasonic transdermal insulin delivery. The Journal of the Acoustical Society of America 122, 2022–2030, https://doi.org/10.1121/1.2769980 (2007).
21. Banga AK. Microporation applications for enhancing drug delivery. Expert opinion on drug delivery. 2009; 6: 343–354. doi: 10.1517 / 17425240902841935.
22. Levin G, Gershonowitz A, Sacks H, Stern M, Sherman A, Rudaev S, Zivin I, Phillip M. Transdermal delivery of human growth hormone through RF-microchannels. Pharm Res. 2005 Apr;22(4):550-5. doi: 10.1007/s11095-005-2498-6. Epub 2005 Apr 7. PMID: 15846462.
23. Mitragotri S. Current status and future prospects of needle-free liquid jet injectors. Nat Rev Drug Discov. 2006 Jul;5(7):543-8. doi: 10.1038/nrd2076. PMID: 16816837.
24. Kalluri H, Banga AK. Transdermal delivery of proteins. AAPS PharmSciTech. 2011 Mar;12(1):431-41. doi: 10.1208/s12249-011-9601-6. Epub 2011 Mar 3. PMID: 21369712; PMCID: PMC3066337.
25. Zhao YL, Murthy SN, Manjili MH, Guan LJ, Sen A, Hui SW. Induction of cytotoxic T-lymphocytes by electroporation-enhanced needle-free skin immunization. Vaccine. 2006 Feb 27;24(9):1282-90. doi: 10.1016/j.vaccine.2005.09.035. Epub 2005 Sep 27. PMID: 16225969.
26. Lim SH, Sun Y, Thiruvallur Madanagopal T, Rosa V, Kang L. Enhanced Skin Permeation of Anti-wrinkle Peptides via Molecular Modification. Sci Rep. 2018 Jan 25;8(1):1596. doi: 10.1038/s41598-017-18454-z. Erratum in: Sci Rep. 2018 Apr 20;8(1):6500. PMID: 29371611; PMCID: PMC5785486.
27. Smrithi Padmakumar, Bindhu Paul-Prasanth, K Pavithran, DK Vijaykumar, Anupama Rajanbabu, TB Sivanarayanan, Ekta Kadakia, Mansoor M Amiji, Shantikumar V Nair, Deepthy Menon , Long-term drug delivery using implantable electrospun woven polymeric Nanotextiles. Nano (2018), doi:10.1016/j.nano.2018.10.002,
28. Makowska, J., Tesmar, A., Wyrzykowski, D. et al. Investigation of the Binding Properties of the Cosmetic Peptide Argireline and Its Derivatives Towards Copper(II) Ions. J Solution Chem 47, 80–91 (2018). https://doi.org/10.1007/s10953-017-0705-9
29. Sabino M, Márquez L y Feijoo J. Estudio de la degradación hidrolítica de la polidioxanona para la predicción del tiempo de vida útil Rev. Tec. Ing. Univ. Zulia. 1998; 21(3):170-178.Disponible en: http://www.produccioncientifica.luz.edu.ve/index.php/tecnica/article/viewFile/5608/5598
30. Grosicki M, Latacz G, Szopa A, Cukier A, Kieć-Kononowicz K. The study of cellular cytotoxicity of argireline - an anti-aging peptide. Acta Biochim Pol. 2014; 61(1):29-32. Epub 2014 Mar 17. PMID: 24644551