Digital epidemiology and Infodemiology of hand-foot-mouth disease (HFMD) in Italy. Disease trend assessment via Google and Wikipedia.

##plugins.themes.themeTen.article.main##

Omar Enzo Santangelo
Vincenza Gianfredi https://orcid.org/0000-0003-3848-981X
Sandro Provenzano
Fabrizio Cedrone

Keywords

Hand-foot-mouth disease, HFMD, Italy, Digital Epidemiology, Google, Wikipedia, Epidemiology, Infectious Diseases, Infodemiology, Medical Informatics Computing

Abstract

Background and aim: The study aimed to evaluate the epidemiological trend of hand, foot and mouth disease (HFMD) in Italy using data on Internet searches volume


Methods: A cross-sectional study design was used. Data on Internet searches have been obtained from Google Trends (GT) and Wikipedia. We used the following Italian search term: “Malattia mano-piede-bocca” (Hand-foot-mouth disease, in English). One monthly time-frame elapsing have been extracted partly overlapping, from July 2015 to December 2022. We overlapped GT and Wikipedia data to perform a linear regression and correlation analysis. Statistical analyses were performed using the Spearman's rank correlation coefficient (rho). A linear regression was performed considering Wikipedia and GT.


Results: The search peaks for both Wikipedia and GT are in the months November-December for the autumn-winter season, in the month of June for the spring-summer season, with the exception of the period from June 2020 to June 2021 (probably due to the restrictions of the COVID19 pandemic). A temporal correlation was observed between GT and Wikipedia search trends.


Conclusions: This is the first study in Italy that tries to clarify the epidemiology of HFMD, Google search and Wikipedia can be useful for public health surveillance; however, to date, digital epidemiology cannot replace the classical surveillance system.

Downloads

Download data is not yet available.
Abstract 5 |

References

1. Esposito S, Principi N. Hand, foot and mouth disease: current knowledge on clinical manifestations, epidemiology, aetiology and prevention. Eur J Clin Microbiol Infect Dis. 2018;37(3):391-398. doi:10.1007/s10096-018-3206-x
2. CDC, Center for Diseases Control and Prevention. USA. Available online: https://www.cdc.gov/hand-foot-mouth/about/transmission.html (last access January 09, 2022)
3. Solomon T, Lewthwaite P, Perera D, Cardosa MJ, McMinn P, Ooi MH. Virology, epidemiology, pathogenesis, and control of enterovirus 71. Lancet Infect Dis. 2010;10(11):778-790. doi:10.1016/S1473-3099(10)70194-8
4. Guerra AM, Orille E, Waseem M. Hand Foot and Mouth Disease. 2022 Oct 9. In: StatPearls (Internet). Treasure Island (FL): StatPearls Publishing; 2022 Jan–. PMID: 28613736.
5. Huang J, Liao Q, Ooi MH, et al. Epidemiology of Recurrent Hand, Foot and Mouth Disease, China, 2008-2015. Emerg Infect Dis. 2018;24(3):432-442. doi:10.3201/eid2403.171303
6. Ruan F, Yang T, Ma H, et al. Risk factors for hand, foot, and mouth disease and herpangina and the preventive effect of hand-washing. Pediatrics. 2011;127(4):e898-e904. doi:10.1542/peds.2010-1497
7. Wang YR, Sun LL, Xiao WL, Chen LY, Wang XF, Pan DM. Epidemiology and clinical characteristics of hand foot, and mouth disease in a Shenzhen sentinel hospital from 2009 to 2011. BMC Infect Dis. 2013;13:539. Published 2013 Nov 13. doi:10.1186/1471-2334-13-539
8. Nguyen NT, Pham HV, Hoang CQ, et al. Epidemiological and clinical characteristics of children who died from hand, foot and mouth disease in Vietnam, 2011. BMC Infect Dis. 2014;14:341. Published 2014 Jun 18. doi:10.1186/1471-2334-14-341
9. Abedi GR, Watson JT, Nix WA, Oberste MS, Gerber SI. Enterovirus and Parechovirus Surveillance - United States, 2014-2016. MMWR Morb Mortal Wkly Rep. 2018;67(18):515-518. Published 2018 May 11. doi:10.15585/mmwr.mm6718a2
10. Provenzano S, Gianfredi V, Santangelo OE. Insight the data: Wikipedia's researches and real cases of arboviruses in Italy. Public Health. 2021; 192:21-29. doi:10.1016/j.puhe.2020.12.010
11. Provenzano S, Santangelo OE, Giordano D, et al. Predicting disease outbreaks: evaluating measles infection with Wikipedia Trends. Recenti Prog Med. 2019 Jun;110(6):292-296. doi: 10.1701/3182.31610
12. Gianfredi V Santangelo OE, Provenzano S. Correlation between flu and Wikipedia’s pages visualization. Acta Biomed. 2021; 92 (1):e2021056. doi: 10.23750/abm.v92i1.9790
13. Santangelo OE, Provenzano S, Gianfredi V. Infodemiology of flu: Google trends-based analysis of Italians’ digital behavior and a focus on SARS-CoV-2 Italy. J Prev Med Hyg 2021;62:E586-E591. https://doi.org/10.15167/2421-4248/jpmh2021.62.3.1704
14. Santangelo OE, Provenzano S, Grigis D, Giordano D, Armetta F, Firenze A. Can Google Trends and Wikipedia help traditional surveillance? A pilot study on Measles. Acta Biomed. 2020; 91 (4):e2020190. doi: 10.23750/abm.v91i4.8888
15. Santangelo OE, Provenzano S, Piazza D, Giordano D, Calamusa G, Firenze A. Digital epidemiology: assessment of measles infection through Google Trends mechanism in Italy. Ann Ig. 2019 Jul-Aug;31(4):385-391. doi: 10.7416/ai.2019.2300
16. Santangelo OE, Gianfredi V, Provenzano S. Wikipedia searches and the epidemiology of infectious diseases: A systematic review. Data & Knowledge Engineering. 2022; 142: 102093. Published 2022 15 Oct. doi: 10.1016/j.datak.2022.102093
17. Google Trends. Available online: https://trends.google.it/trends/?geo=IT (last access January 9, 2022)
18. Wikipedia. Available from: https://tools.wmflabs.org/pageviews (last accessed January 9, 2022)
19. Mukaka MM. Statistics corner: A guide to appropriate use of correlation coefficient in medical research. Malawi Med J. 2012;24(3):69-71.
20. White KJ. The Durbin-Watson Test for Autocorrelation in Nonlinear Models 370 The Review of Economics and Statistics the Durbin-Watson Test for Autocorrelation in Nonlinear Models. Rev. Econ. Stat. 1992, 74, 370–373.
21. StataCorp. Stata Statistical Software. In: Station C, editor.: StataCorp LP; 2015.
22. Niu Q, Liu J, Zhao Z, et al. Explanation of hand, foot, and mouth disease cases in Japan using Google Trends before and during the COVID-19: infodemiology study. BMC Infect Dis. 2022;22(1):806. Published 2022 Oct 29. doi:10.1186/s12879-022-07790-9
23. Kow RY, Mohamad Rafiai N, Ahmad Alwi AA, et al. COVID-19 Infodemiology: Association Between Google Search and Vaccination in Malaysian Population. Cureus. 2022;14(9):e29515. Published 2022 Sep 23. doi:10.7759/cureus.29515
24. Springer S, Zieger M, Strzelecki A. The rise of infodemiology and infoveillance during COVID-19 crisis. One Health. 2021;13:100288. Published 2021 Jul 3. doi:10.1016/j.onehlt.2021.100288
25. Nucci D, Santangelo OE, Nardi M, Provenzano S, Gianfredi V. Wikipedia, Google Trends and Diet: Assessment of Temporal Trends in the Internet Users' Searches in Italy before and during COVID-19 Pandemic. Nutrients. 2021;13(11):3683. Published 2021 Oct 20. doi:10.3390/nu13113683
26. Cai O, Sousa-Pinto B. United States Influenza Search Patterns Since the Emergence of COVID-19: Infodemiology Study. JMIR Public Health Surveill. 2022;8(3):e32364. Published 2022 Mar 3. doi:10.2196/32364
27. Santangelo OE, Gentile V, Pizzo S, Giordano D, Cedrone F. Machine Learning and Prediction of Infectious Diseases: A Systematic Review. Machine Learning and Knowledge Extraction. 2023; 5(1):175-198. https://doi.org/10.3390/make5010013
28. Gianfredi V, Santangelo OE, Provenzano S. The effects of COVID-19 pandemic on the trend of measles and influenza in Europe. Acta Biomed. 2021;92(4):e2021318. Published 2021 Sep 2. doi:10.23750/abm.v92i4.11558
29. Gianfredi V, Bragazzi NL, Mahamid M, et al. Monitoring public interest toward pertussis outbreaks: an extensive Google Trends-based analysis. Public Health. 2018;165:9-15. doi:10.1016/j.puhe.2018.09.001
30. Riccò M, Valente M, Marchesi F. Are symptoms associated with SARS-CoV-2 infections evolving over time? Infect Dis Now. 2022;52(2):110-112. doi:10.1016/j.idnow.2022.01.006
31. Riccò M, Baldassarre A, Provenzano S, et al. Infodemiology of RSV in Italy (2017-2022): An Alternative Option for the Surveillance of Incident Cases in Pediatric Age?. Children (Basel). 2022;9(12):1984. Published 2022 Dec 16. doi:10.3390/children9121984
32. Salathé M. Digital epidemiology: what is it, and where is it going?. Life Sci Soc Policy. 2018;14(1):1. Published 2018 Jan 4. doi:10.1186/s40504-017-0065-7
33. Malik S. A Comparative Study of two major Search Engines: Google and Yahoo. Orient. J. Comp. Sci. and Technol;7(1). Available from: http://computerscijournal.org/?p=706

Most read articles by the same author(s)

1 2 > >>