Baseline serum vitamin A and vitamin C levels and their association with disease severity in COVID-19 patients
Serum Vitamin A and C levels and COVID-19 severity
Keywords:
Ascorbic acid, COVID-19, Hospital stay, Pulmonary disease, Vitamin AAbstract
Aim: We aimed to investigate the association between the serum concentrations of Vitamin A and Vitamin C and the severity of the COVID-19.
Methods: Fifty-three consecutive PCR (+) COVID-19 patients admitted to a dedicated ward were enrolled in this study. Blood samples for serum Vitamin A and C measurements were drawn from all participants upon admission. All subjects underwent thoracic CT imaging prior to hospitalization. CT severity score (CT-SS) was then calculated for determining the extent of pulmonary involvement. A group of healthy volunteers, in whom COVID-19 was ruled out, were assigned to the control group (n=26). These groups were compared by demographic features and serum vitamin A and C levels. The relationship between serum concentrations of these vitamins and pre-defined outcome measures, CT-SS and length of hospitalization (LOH), was also assessed.
Results: In COVID-19 patients, serum Vitamin A (ng/ml, 494±96 vs. 698±93; p<0.001) and Vitamin C (ng/ml, 2961 [1991-31718] vs. 3953 [1385-8779]; p=0.007) levels were significantly lower with respect to healthy controls. According to the results of correlation analyses, there was a significant negative association between Vitamin A level and outcome measures (LOH, r=-0.293; p=0.009 and CT-SS, r=-0.289; p=0.010). The negative correlations between Vitamin C level and those measures were even more prominent (LOH, r=-0.478; p<0.001 and CT-SS, r=-0.734: p<0.001).
Conclusion: COVID-19 patients had lower baseline serum Vitamin A and Vitamin C levels as compared to healthy controls. In subjects with COVID-19, Vitamin A and Vitamin C levels were negatively correlated with CT-SS and LOH.
References
Jamal M, Bangash HI, Habiba M, et al. Immune dysregulation and system pathology in COVID-19. Virulence. 2021; 12(1):918-36. doi: 10.1080/21505594.2021.1898790.
Odegaard JI, Chawla A. Connecting type 1 and type 2 diabetes through innate immunity. Cold Spring Harb Perspect Med. 2012; 2(3):a007724. doi: 10.1101/cshperspect.a007724.
Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. 2020; 20(6):363-74. doi: 10.1038/s41577-020-0311-8.
Farjana M, Moni A, Sohag AAM, et al. Repositioning Vitamin C as a Promising Option to Alleviate Complications associated with COVID-19. Infect Chemother. 2020 Dec;52(4):461-77. doi: 10.3947/ic.2020.52.4.461.
Murni IK, Prawirohartono EP, Triasih R. Potential Role of Vitamins and Zinc on Acute Respiratory Infections Including Covid-19. Glob Pediatr Health. 2021; 8:2333794X211021739. doi: 10.1177/2333794X211021739.
Yang R, Li X, Liu H, Zhen Y, Zhang X, Xiong Q, et al. Chest CT Severity Score: An Imaging Tool for Assessing Severe COVID-19. Radiol Cardiothorac Imaging. 2020; 2(2):e200047. doi: 10.1148/ryct.2020200047.
Tian J, Yuan X, Xiao J, et al. Clinical characteristics and risk factors associated with COVID-19 disease severity in patients with cancer in Wuhan, China: a multicentre, retrospective, cohort study. Lancet Oncol. 2020; 21(7):893-903. doi: 10.1016/S1470-2045(20)30309-0.
Pereira MR, Mohan S, Cohen DJ, et al. COVID-19 in solid organ transplant recipients: Initial report from the US epicenter. Am J Transplant. 2020; 20(7):1800-8. doi: 10.1111/ajt.15941.
Pecoraro A, Crescenzi L, Galdiero MR, et al. Immunosuppressive therapy with rituximab in common variable immunodeficiency. Clin Mol Allergy. 2019; 17:9. doi: 10.1186/s12948-019-0113-3.
Shiau S, Krause KD, Valera P, Swaminathan S, Halkitis PN. The Burden of COVID-19 in People Living with HIV: A Syndemic Perspective. AIDS Behav. 2020; 24(8):2244-9. doi: 10.1007/s10461-020-02871-9.
Riva A, Conti F, Bernacchia D, et al. Darunavir does not prevent SARS-CoV-2 infection in HIV patients. Pharmacol Res. 2020; 157:104826. doi: 10.1016/j.phrs.2020.104826.
McCullough FS, Northrop-Clewes CA, Thurnham DI. The effect of vitamin A on epithelial integrity. Proc Nutr Soc. 1999; 58(2):289-93. doi: 10.1017/s0029665199000403.
Wang JL, Swartz-Basile DA, Rubin DC, Levin MS. Retinoic acid stimulates early cellular proliferation in the adapting remnant rat small intestine after partial resection. J Nutr. 1997; 127(7):1297-303. doi: 10.1093/jn/127.7.1297.
Qi YJ, Niu QL, Zhu XL, Zhao XZ, Yang WW, Wang XJ. Relationship between deficiencies in vitamin A and E and occurrence of infectious diseases among children. Eur Rev Med Pharmacol Sci. 2016; 20(23):5009-12.
Kiss I, Rühl R, Szegezdi E, et al. Retinoid receptor-activating ligands are produced within the mouse thymus during postnatal development. Eur J Immunol. 2008; 38(1):147-55. doi: 10.1002/eji.200737342.
Kuwata T, Wang IM, Tamura T, et al. Vitamin A deficiency in mice causes a systemic expansion of myeloid cells. Blood. 2000; 95(11):3349-56.
van Bennekum AM, Wong Yen Kong LR, Gijbels MJ, et al. Mitogen response of B cells, but not T cells, is impaired in adult vitamin A-deficient rats. J Nutr. 1991; 121(12):1960-8. doi: 10.1093/jn/121.12.1960.
Mohammed BM, Fisher BJ, Kraskauskas D, et al. Vitamin C promotes wound healing through novel pleiotropic mechanisms. Int Wound J. 2016; 13(4):572-84. doi: 10.1111/iwj.12484.
Fisher BJ, Kraskauskas D, Martin EJ, et al. Mechanisms of attenuation of abdominal sepsis induced acute lung injury by ascorbic acid. Am J Physiol Lung Cell Mol Physiol. 2012; 303(1): L20-32. doi: 10.1152/ajplung.00300.2011.
Jimenez MF, Watson RW, Parodo J, et al. Dysregulated expression of neutrophil apoptosis in the systemic inflammatory response syndrome. Arch Surg. 1997; 132(12):1263-9; doi: 10.1001/archsurg.1997.01430360009002.
Demaret J, Venet F, Friggeri A, et al. Marked alterations of neutrophil functions during sepsis-induced immunosuppression. J Leukoc Biol. 2015; 98(6):1081-90. doi: 10.1189/jlb.4A0415-168RR.
Arraes SM, Freitas MS, da Silva SV, de Paula Neto HA, Alves-Filho JC, Auxiliadora Martins M, et al. Impaired neutrophil chemotaxis in sepsis associates with GRK expression and inhibition of actin assembly and tyrosine phosphorylation. Blood. 2006; 108(9):2906-13. doi: 10.1182/blood-2006-05-024638.
Heuser G, Vojdani A. Enhancement of natural killer cell activity and T and B cell function by buffered vitamin C in patients exposed to toxic chemicals: the role of protein kinase-C. Immunopharmacol Immunotoxicol. 1997; 19(3):291-312. doi: 10.3109/08923979709046977.
Kim Y, Kim H, Bae S, et al. Vitamin C Is an Essential Factor on the Anti-viral Immune Responses through the Production of Interferon-α/β at the Initial Stage of Influenza A Virus (H3N2) Infection. Immune Netw. 2013; 13(2):70-4. doi: 10.4110/in.2013.13.2.70.
Mochalkin NI. Askorbinovaia kislota v kompleksnoĭ terapii bol'nykh ostroĭ pnevmonieĭ [Ascorbic acid in the complex therapy of acute pneumonia]. Voen Med Zh. 1970; 9:17-21. Russian.
Hunt C, Chakravorty NK, Annan G, Habibzadeh N, Schorah CJ. The clinical effects of vitamin C supplementation in elderly hospitalised patients with acute respiratory infections. Int J Vitam Nutr Res. 1994; 64(3):212-9.
Li R, Wu K, Li Y, et al. Revealing the targets and mechanisms of vitamin A in the treatment of COVID-19. Aging (Albany NY). 2020; 12(15):15784-96. doi: 10.18632/aging.103888.
Stephensen CB, Lietz G. Vitamin A in resistance to and recovery from infection: relevance to SARS-CoV2. Br J Nutr. 2021; 126(11):1663-72. doi: 10.1017/S0007114521000246.
Coppock D, Violet PC, Vasquez G, et al. Pharmacologic Ascorbic Acid as Early Therapy for Hospitalized Patients with COVID-19: A Randomized Clinical Trial. Life (Basel). 2022; 12(3):453. doi: 10.3390/life12030453.
Al Sulaiman K, Aljuhani O, Saleh KB, et al. Ascorbic acid as an adjunctive therapy in critically ill patients with COVID-19: a propensity score matched study. Sci Rep. 2021; 11(1):17648. doi: 10.1038/s41598-021-96703-y.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Gulseren Yilmaz, Huri Bulut, Derya Ozden Omaygenc, Aysu Akca, Esra Can, Nevin Tuten, Aysegul Bestel, Baki Erdem, Uygar Ozan Atmaca, Yasin Kara, Ebru Kaya, Murat Unsel, Ayca Sultan Sahin, Ziya Salihoglu
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Transfer of Copyright and Permission to Reproduce Parts of Published Papers.
Authors retain the copyright for their published work. No formal permission will be required to reproduce parts (tables or illustrations) of published papers, provided the source is quoted appropriately and reproduction has no commercial intent. Reproductions with commercial intent will require written permission and payment of royalties.