Determine the kinematics and kinetics parameters associated with bilateral gait patterns among healthy, overweight, and obese adults
Keywords:
Walking,, Locomotion,, Biomechanics,, Motion analysis,, Body Traits.Abstract
Background and aim: Biomechanical analysis of gait is important to obtain information regarding the lower limb impairments and dysfunction during locomotion. This study aimed to determine the potential difference among healthy, overweight, and obese participants and their impact on gait parameters by observing the kinematic and kinetics parameters. Methods: A cross-sectional study conducted with forty (15 healthy, 12, overweight, 13 obese) male participants. All participants were non-smokers, and their physical activity level was 7000±2142 steps per day. Participants anthropometric characteristics were age:21.57±1.46 years; height:173. 63±6.43 cm, body mass;86.15±23.36 kg., body mass index (BMI) :28.57±7.68 kg/m2, body fat:29.93±9.44%. A bioelectrical impedance device was used to determine participants' body composition and health status. A portable pressure sensor mat (Walkway) from Tekscan was used to measure bilateral gait parameters kinematically and kinetically. One-way analysis of variance was used to determine the differences between groups. Results: Significant differences were found between health, overweight, and obese participant for different bilateral gait's kinematic and kinetic parameters as cadence, gait velocity, step time, step length, step velocity, step width, stride time, stride length, stride velocity, maximum force, maximum peak pressure, active propulsion, and passive propulsion except impulse at .05 level of significance. Conclusions: The findings shows that kinematics and kinetics parameters of gait were affected by the status of their BMI. Current research suggests that increased body weight interferes with normal musculoskeletal function via a range of kinematic and kinetic deficits. More research is required to accurately understand the structural and functional restriction imposed by overweight and obese individuals.
References
Silva FR, Muniz AM de S, Cerqueira LS, Nadal J. Biomechanical alterations of gait on overweight subjects. Res Biomed Eng. 2018;34(4). doi:10.1590/2446-4740.180017
Virgens Chagas D Das, Leporace G, Praxedes J, Carvalho I, Pinto S, Batista LA. Analysis of kinematic parameters of gait in Brazilian children using a low-cost procedure. Hum Mov. 2013;14(4). doi:10.2478/humo-2013-0041
Kwon JW, Son SM, Lee NK. Changes of kinematic parameters of lower extremities with gait speed: A 3D motion analysis study. J Phys Ther Sci. 2015;27(2). doi:10.1589/jpts.27.477
Deconinck FJA, De Clercq D, Savelsbergh GJP, Van Coster R, Oostra A, Dewitte G, et al. Differences in gait between children with and without developmental coordination disorder. Motor Control. 2006;10(2). doi:10.1123/mcj.10.2.125
Frey C, Zamora J. The effects of obesity on orthopaedic foot and ankle pathology. Foot Ankle Int. 2007;28(9). doi:10.3113/FAI.2007.0996
Stenholm S, Sainio P, Rantanen T, Alanen E, Koskinen S. Effect of co-morbidity on the association of high body mass index with walking limitation among men and women aged 55 years and older. Aging Clin Exp Res. 2007;19(4). doi:10.1007/BF03324702
Ling SM, Fried LP, Garrett ES, Fan M yu, Rantanen T, Bathon JM. Knee osteoarthritis compromises early mobility function: The Women’s Health and Aging Study II. J Rheumatol. 2003;30(1).
Xu S, Xue Y. Pediatric obesity: Causes, symptoms, prevention and treatment (review). Vol. 11, Experimental and Therapeutic Medicine. 2016. doi:10.3892/etm.2015.2853
Dowling AM, Steele JR, Baur LA. Does obesity influence foot structure and plantar pressure patterns in prepubescent children? Int J Obes. 2001;25(6). doi:10.1038/sj.ijo.0801598
Hills AP, Hennig EM, McDonald M, Bar-Or O. Plantar pressure differences between obese and non-obese adults: A biomechanical analysis. Int J Obes. 2001;25(11). doi:10.1038/sj.ijo.0801785
Messier SP, Davies AB, Moore DT, Davis SE, Pack RJ, Kazmar SC. Severe obesity: Effects on foot mechanics during walking. Foot Ankle Int. 1994;15(1). doi:10.1177/107110079401500106
Messier SP, Loeser RF, Miller GD, Morgan TM, Rejeski WJ, Sevick MA, et al. Exercise and Dietary Weight Loss in Overweight and Obese Older Adults with Knee Osteoarthritis: The Arthritis, Diet, and Activity Promotion Trial. Arthritis Rheum. 2004;50(5). doi:10.1002/art.20256
Spyropoulos P, Pisciotta JC, Pavlou KN, Cairns MA, Simon SR. Biomechanical gait analysis in obese men. Arch Phys Med Rehabil. 1991;72(13).
Zammit G V., Menz HB, Munteanu SE. Reliability of the TekScan MatScan®system for the measurement of plantar forces and pressures during barefoot level walking in healthy adults. J Foot Ankle Res. 2010;3(1). doi:10.1186/1757-1146-3-11
Lai PPK, Leung AKL, Li ANM, Zhang M. Three-dimensional gait analysis of obese adults. Clin Biomech. 2008;23(SUPLL.1). doi:10.1016/j.clinbiomech.2008.02.004
Abualait T, Ahsan M. Comparison of gender, age, and body mass index for spatiotemporal parameters of bilateral gait pattern. F1000Research. 2021;10. doi:10.12688/f1000research.51700.1
Pau M, Capodaglio P, Leban B, Porta M, Galli M, Cimolin V. Kinematics adaptation and inter-limb symmetry during gait in obese adults. Sensors. 2021;21(17). doi:10.3390/s21175980
Dufek JS, Currie RL, Gouws PL, Candela L, Gutierrez AP, Mercer JA, et al. Effects of overweight and obesity on walking characteristics in adolescents. Hum Mov Sci. 2012;31(4). doi:10.1016/j.humov.2011.10.003
Hills AP, Parker AW. Gait characteristics of obese children. Arch Phys Med Rehabil. 1991;72(6). doi:10.1097/01241398-199111000-00032
Runhaar J, Koes BW, Clockaerts S, Bierma-Zeinstra SMA. A systematic review on changed biomechanics of lower extremities in obese individuals: A possible role in development of osteoarthritis. Obes Rev. 2011;12(12). doi:10.1111/j.1467-789X.2011.00916.x
Meng H, O’Connor DP, Lee BC, Layne CS, Gorniak SL. Alterations in over-ground walking patterns in obese and overweight adults. Gait Posture. 2017;53. doi:10.1016/j.gaitpost.2017.01.019
Gouws PL. Effects of obesity on the biomechanics of children’s gait at different speeds. UNLV Theses/Dissertations/Professional Pap. 2010;39(9).
Cruz-Montecinos C, Pérez-Alenda S, Querol F, Cerda M, Maas H. Changes in Muscle Activity Patterns and Joint Kinematics During Gait in Hemophilic Arthropathy. Front Physiol. 2020;10. doi:10.3389/fphys.2019.01575
Molina-Garcia P, Migueles JH, Cadenas-Sanchez C, Esteban-Cornejo I, Mora-Gonzalez J, Rodriguez-Ayllon M, et al. A systematic review on biomechanical characteristics of walking in children and adolescents with overweight/obesity: Possible implications for the development of musculoskeletal disorders. Obesity Reviews. 2019. doi:10.1111/obr.12848
Rosso V, Agostini V, Takeda R, Tadano S, Gastaldi L. Influence of BMI on gait characteristics of young adults: 3D evaluation using inertial sensors. Sensors (Switzerland). 2019;19(19). doi:10.3390/s19194221
Sousa ASP, Silva A, Tavares JMRS. Biomechanical and neurophysiological mechanisms related to postural control and efficiency of movement: A review. Vol. 29, Somatosensory and Motor Research. 2012. doi:10.3109/08990220.2012.725680
Browning R, Kram R, Brynes W. Effects of Obesity on the Biomechanics of Walking at different speeds. Med Sci Sport Exerc. 2006;38(Supplement). doi:10.1249/00005768-200605001-00896
Alahmri F, Alsaadi S, Ahsan M. Comparison of 3d hip joint kinematics in people with asymptomatic pronation of the foot and non-pronation controls. Malaysian J Med Sci. 2021;28(3). doi:10.21315/MJMS2021.28.3.7
Lelas JL, Merriman GJ, Riley PO, Kerrigan DC. Predicting peak kinematic and kinetic parameters from gait speed. Gait Posture. 2003;17(2). doi:10.1016/S0966-6362(02)00060-7
Peterson CL, Kautz SA, Neptune RR. Braking and propulsive impulses increase with speed during accelerated and decelerated walking. Gait Posture. 2011;33(4). doi:10.1016/j.gaitpost.2011.01.010
Simon SR, Paul IL, Mansour J, Munro M, Abernethy PJ, Radin EL. Peak dynamic force in human gait. J Biomech. 1981;14(12). doi:10.1016/0021-9290(81)90009-9
Birtane M, Tuna H. The evaluation of plantar pressure distribution in obese and non-obese adults. Clin Biomech. 2004;19(10). doi:10.1016/j.clinbiomech.2004.07.008
Haight DJ, Lerner ZF, Board WJ, Browning RC. A comparison of slow, uphill and fast, level walking on lower extremity biomechanics and tibiofemoral joint loading in obese and nonobese adults. J Orthop Res. 2014;32(2). doi:10.1002/jor.22497
Lerner ZF, Board WJ, Browning RC. Effects of obesity on lower extremity muscle function during walking at two speeds. Gait Posture. 2014;39(3). doi:10.1016/j.gaitpost.2013.12.020
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Mohammad Ahsan
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Transfer of Copyright and Permission to Reproduce Parts of Published Papers.
Authors retain the copyright for their published work. No formal permission will be required to reproduce parts (tables or illustrations) of published papers, provided the source is quoted appropriately and reproduction has no commercial intent. Reproductions with commercial intent will require written permission and payment of royalties.