A randomized controlled trial (RCT) to explore the effect of audio-visual entrainment among psychological disorders.
Neuro-Upper
Keywords:
Entrainment, Brain-Computer-Interface, Psychological disorders, InterventionAbstract
Background and aim: Although many mental disorders have relevant proud in neurobiological dysfunctions, most intervention approaches neglect neurophysiological features or use pharmacological intervention alone. Non-invasive Brain-Computer Interfaces (BCIs), providing natural ways of modulating mood states, can be promoted as an alternative intervention to cope with neurobiological dysfunction.
Methods: A BCI prototype was proposed to feedback a person’s affective state such that a closed-loop interaction between the participant’s brain responses and the musical stimuli is established. It feedbacks in real-time flickering lights matching with the individual’s brain rhythms undergo to auditory stimuli. A RCT was carried out on 15 individuals of both genders (mean age = 49.27 years) with anxiety and depressive spectrum disorders randomly assigned to 2 groups (experimental vs. active control).
Results: Outcome measures revealed either a significant decrease in Hamilton Rating Scale for Depression (HAM-D) scores and gains in cognitive functions only for participants who undergone to the experimental treatment. Variability in HAM-D scores seems explained by the changes in beta 1, beta 2 and delta bands. Conversely, the rise in cognitive function scores appear associated with theta variations.
Conclusions: Future work needs to validate the relationship proposed here between music and brain responses. Findings of the present study provided support to a range of research examining BCI brain modulation and contributes to the understanding of this technique as instruments to alternative therapies We believe that Neuro-Upper can be used as an effective new tool for investigating affective responses, and emotion regulation (www.actabiomedica.it)
References
Menon V. Large-scale brain networks and psychopathology: A unifying triple network model. Trends Cogn Sci 2011; 15: 483-506. doi: 10.1016/j.tics.2011.08.003.
McFarland DJ, Daly J, Boulay C, Parvaz M. Therapeutic applications of BCI technologies. Brain Comp Interf 2017; 47(1-2): 37-52. https://doi.org/10.1080/2326263X.2017.1307625
Sitaram R, Ros T, Stoeckel L, Haller S, Scharnowski F, Lewis-Peacock J, et al.. Closed-loop brain training: The science of neurofeedback. Nat Rev Neurosci 2017; 18(2): 86-100. https://doi.org/10.1038/nrn.2016.164
Sigala R, Haufe S, Roy D, Dinse HR, Ritter P. The role of alpha-rhythm states in perceptual learning: Insights from experiments and computational models. Front Comput Neurosci 2014; 8: 36. https://doi.org/10.3389/fncom.2014.00036
Zhou H, Melloni L, Poeppel D, Ding N. Interpretations of frequency domain analyses of neural entrainment: Periodicity, fundamental frequency, and harmonics. Front Hum Neurosci 2016; 10: 274. doi: 10.3389/fnhum.2016.00274
Kober SE, Witte M, Ninaus M, Neuper C, Wood G. Learning to modulate one’s own brain activity: The effect of spontaneous mental strategies. Front Hum Neurosci 2013; 7: 695. doi: 10.3389/fnhum.2013.00695.
Ros T, J Baars B, Lanius RA, Vuilleumier P. Tuning pathological brain oscillations with neurofeedback: A systems neuroscience framework. Front Hum Neurosci 2014; 8: 1008. doi:10.3389/fnhum.2014.01008
Ruhnau P, Keitel C, Lithari C, Weisz N, Neuling T. Flicker-driven responses in visual cortex change during matched-frequency transcranial alternating current stimulation. Front Hum Neurosci 2016; 10: 184. doi:10.3389/fnhum.2016.00184
Zoefel B, Huster RJ, Herrmann CS. Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance. Neuroimage 2011; 54 (2): 1427-1431. doi:10.1016/j.neuroimage.2010.08.078
Freyer F, Becker R, Dinse HR, Ritter P. State-dependent perceptual learning. J Neurosci 2013; 33 (7): 2900-2907. doi:10.1523/JNEUROSCI.4039-12.2013
Sale A, De Pasquale R, Bonaccorsi J, Pietra G, Olivieri D, Berardi N, et al. Visual perceptual learning induces long-term potentiation in the visual cortex. Neurosci 2011; 172: 219-225. 10.1016/j.neuroscience.2010.10.078
Naas A, Rodrigues J, Knirsch JP, Sonderegger A. Neurofeedback training with a low-priced EEG device leads to faster alpha enhancement but shows no effect on cognitive performance: A single-blind, sham-feedback study. PLoS One 2019; 14 (9): e0211668. doi:10.1371/journal.pone.0211668
Mühl C, Allison B, Nijholt A, Chanel G. A survey of affective brain computer interfaces: principles, state-of-the-art, and challenges. Brain-Comp Interf 2014; 1(2): 66-84. 10.1080/2326263X.2014.912881
Wang SY, Lin IM, Fan SY, et al. The effects of alpha asymmetry and high-beta down-training neurofeedback for patients with the major depressive disorder and anxiety symptoms. J Affect Disord 2019; 257: 287-296. doi:10.1016/j.jad.2019.07.026
Shibata K, Watanabe T, Sasaki Y, Kawato M. Perceptual learning incepted by decoded fMRI neurofeedback without stimulus presentation. Science 2011; 334 (6061): 1413-1415. doi:10.1126/science.1212003
Martínez-Molina N, Mas-Herrero E, Rodríguez-Fornells A, Zatorre RJ, Marco-Pallarés J. Neural correlates of specific musical anhedonia. Proc Natl Acad Sci U S A. 2016; 113 (46): E7337-E7345. doi:10.1073/pnas.1611211113
Ramirez R, Palencia-Lefler M, Giraldo S, Vamvakousis Z. Musical neurofeedback for treating depression in elderly people. Front Neurosci 2015; 9: 354. doi:10.3389/fnins.2015.00354
Knyazev GG. Cross-frequency coupling of brain oscillations: an impact of state anxiety. Int J Psychophysiol 2011; 80 (3): 236-245. doi:10.1016/j.ijpsycho.2011.03.013. PMID: 21458502.
Ruiz S, Lee S, Soekadar SR, et al. Acquired self-control of insula cortex modulates emotion recognition and brain network connectivity in schizophrenia. Hum Brain Mapp 2013; 34 (1): 200-212. doi:10.1002/hbm.21427
Lin YP, Wang CH, Jung TP, et al. EEG-based emotion recognition in music listening. IEEE Trans Biomed Eng 2010; 57 (7): 1798-1806. doi:10.1109/TBME.2010.2048568
Ehrlich SK, Agres KR, Guan C, Cheng G. A closed-loop, music-based brain-computer interface for emotion mediation. PLoS One 2019; 14 (3): e0213516. doi:10.1371/journal.pone.0213516
Coffey EBJ, Musacchia G, Zatorre RJ. Cortical correlates of the auditory frequency-following and onset responses: EEG and fMRI evidence. J Neurosci 2017; 37: 830-838. doi: 10.1523/JNEUROSCI.1265-16.2017.
Nozaradan S, Peretz I, Mouraux A. Selective neuronal entrainment to the beat and meter embedded in a musical rhythm. J Neurosci 2012; 32 (49): 17572-17581; doi: 10.1523/JNEUROSCI.3203-12.2012
Salimpoor VN, Zald DH, Zatorre RJ, Dagher A, McIntosh AR. Predictions and the brain: how musical sounds become rewarding. Trends Cogn Sci 2015; 19 (2): 86-91. doi:10.1016/j.tics.2014.12.001
Krol LR, Andreessen LM, Zander TO. Passive Brain-Computer Interfaces: A perspective on increased interactivity. In CS Nam, A Nijholt, F Lotte (Eds.), Brain-Computer Interfaces handbook: Technological and theoretical advances (pp. 69-86). Boca Raton, FL, USA: CRC Press, 2018.
Widge AS, Dougherty DD, Moritz CT. Affective Brain-Computer Interfaces as enabling technology for responsive psychiatric stimulation. Brain Comput Interf (Abingdon). 2014; 1 (2): 126-136. doi:10.1080/2326263X.2014.912885
Pino O, La Ragione F. A Brain Computer Interface for audio-visual entrainment in emotional regulation: Preliminary evidence of its effects. Online Interdiscip Res 2016; VI (II): 1-12 http://www.oiirj.org/oiirj/mar-apr2016/05.pdf
Hamilton M A rating scale for depression. J Neurol Neurosurg Psychiatr 1960; 23 (1): 56-62. doi:10.1136/jnnp.23.1.56
Spielberger CD, Gorsuch RL, Lushene R, Vagg PR, Jacobs GA. Manual for the State-Trait Anxiety Inventory. Palo Alto, CA: Consulting Psychologists Press, 1983. http://www.apa.org/pi/about/publications/caregivers/practice-settings/assessment/tools/trait-state.aspx
Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975; 12 (3): 189-198. doi:10.1016/0022-3956(75)90026-6
Wechsler D. Manual for the Wechsler Adult Intelligence Scale-Revised (WAIS-R). New York: The Psychological Corporation, 1981. http://journals.sagepub.com/doi/abs/10.1177/073428298300100310
Raven J, Raven JC, Court JH. Manual for Raven’s Progressive Matrices and vocabulary scales. San Antonio, TX: Harcourt Assessment, 2003. https://pdfs.semanticscholar.org/ff74/66bc742d5277862676714bf7cc4c3a655bcf.pdf
LaRocco J, Le MD, Paeng DG. A systemic review of available low-cost EEG headsets used for drowsiness detection. Front Neuroinform 2020; 14: 553352. doi:10.3389/fninf.2020.553352
Lim CA, Chia WC. Analysis of single-electrode EEG rhythms using MATLAB to elicit correlation with cognitive stress. Int J Comp Eng 2015; 7 (2): 149-155. doi:10.7763/IJCTE.2015.V7.947.
Godinez Tello RM Jr, Torres Muller SM, Ferreira A, Freire Bastos T. Comparison of the influence of stimuli color on Steady-State Visual Evoked Potentials. Res Biomed Eng 2015; 31: 218-231. doi: http://dx.doi.org/10.1590/2446-4740.0739
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Publisher
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Transfer of Copyright and Permission to Reproduce Parts of Published Papers.
Authors retain the copyright for their published work. No formal permission will be required to reproduce parts (tables or illustrations) of published papers, provided the source is quoted appropriately and reproduction has no commercial intent. Reproductions with commercial intent will require written permission and payment of royalties.