Osteosynthesis devices in absorbable Magnesium alloy in comparison to standard ones: a Systematic Review on effectiveness and safety Running title: Absorbable Mg devices for osteosynthesis

Main Article Content

Massimiliano Leigheb http://orcid.org/0000-0002-7818-2209
Michela Veneziano
Rosalba Tortia
Michela Bosetti https://orcid.org/0000-0002-3682-8702
Andrea Cochis https://orcid.org/0000-0003-2455-8239
Lia Rimondini https://orcid.org/0000-0002-7785-2282
Federico Alberto Grassi https://orcid.org/0000-0003-0912-5726

Keywords

Magnesium, Mg alloy, absorbable metal, osteosynthesis, fracture, screw, hallux valgus, orthopedic surgery, bone fixation, implant

Abstract

Background and aim of the work: Magnesium (Mg) is a metal physiologically present in bone tissue and essential for bone health. Mg-based-alloys exhibit mechanical properties, namely density and strength, similar to human cortical bone. These features have been exploited for the development of osteosynthesis devices in biodegradable Mg-based-alloys. Accordingly, the aim of this study was to rank the effectiveness and safety of Mg-based alloys applied in bone surgery in comparison to other suitable metals, focusing in particular on Mg superior biocompatibility and biodegradability.


Methods: a systematic-review of the literature was conducted including only primary research studies dealing with patients suffering from fractured or osteotomized bones fixed using Mg-based osteosynthesis-devices.


Results: literature revision suggested Mg-alloys holding comparable properties and side effects in comparison with titanium (Ti) screws, thus showing similar efficacy and safety. In particular, the gas formation in the carpal bones was identified as the main side effect of the Mg-alloys, during the corrosion/degradation phase of Mg.


Conclusions: according to the considered literature, the main advantages exploiting Mg-alloys for bone implants are related to their biocompatibility, bio-absorbability/-degradability, the lack of surgical removal, osteoconductivity and antibacterial activity. On the opposite, the main limitation of Mg-alloys is due to the poor mechanical resistance of small devices for internal fixation of bone fragments that lack of sufficient strength to withstand high forces. Therefore, an important future prospect could rely in the development of innovative hybrid systems aimed at fixing high load-bearing fractures, as well as in regenerative-medicine by developing new Mg-based engineered scaffolds.

Downloads

Download data is not yet available.
Abstract 17 | PDF Downloads 1

References

1. Okuma T. Magnesium and bone strength. Nutrition 2001; 17: 679-80.
2. Saris NE, Mervaala E, Karppanen H, Khawaja JA, Lewenstam A. Magnesium: an update on physiological, clinical and analytical aspects. Clin Chim Acta 2000; 294: 1-26.
3. Jinghuai Z, Shujuan L, Ruizhi W, Legan H, Milan Z. Recent developments in high-strength Mg-RE-based alloys: focusing on Mg-Gd and Mg-Y systems. J Magnes and Alloys 2018; 6: 277-91.
4. Staiger MP, Pietak AM, Huadmai J, Dias G. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 2006; 27: 1728-34.
5. Jung O, Smeets R, Hartjen P, et al. Improved in vitro test procedure for full assessment of the cytocompatibility of degradable magnesium based on ISO 10993-5/-12. Int J Mol Sci 2019; 20: 255.
6. Shaw BA. Corrosion resistance of magnesium alloys. In: ASM Handbook 2003; Vol. 13A, ASM International.
7. Witte F, Hort N, Vogt C, et al. Degradable materials based on magnesium corrosion. Curr Opin Solid State Mater Sci 2009; 12: 63-72.
8. Xin Y, Hu T, Chu PK. In vitro studies of biomedical magnesium alloys in a simulated physiological environment: a review. Acta Biomater 2011; 7: 1452-9.
9. Myrissa A, Agha NA, Lu Y, et al. In vitro and in vivo comparison of binary Mg-alloys and pure Mg. Mater Sci Eng 2016; 61: 865-74.
10. Thakur VK, Thakur MK, Kessler MR Handbook of composites from renewable materials. Wiley, New York, 2017.
11. Lorenz C, Brunner J G, Kollmannsberger P, Jaafar L. Effect of surface pre-treatments on biocompatibility of magnesium. Acta Biomater 2009; 5: 2783-9.
12. Song GL. Control of biodegradation of biocompatible magnesium alloys. Corros Sci 2007; 49: 1696-701.
13. Witte F. The history of biodegradable magnesium implants: a review. Acta Biomater 2010; 6: 1680-92.
14. Hornberger H, Virtanen S, Boccaccini AR. Biomedical coatings on magnesium alloys – a review. Acta Biomater 2012; 8: 2442-55.
15. Wong HM, Yeung KWK, Lam KO, et al. A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants. Biomaterials 2010; 31: 2084-96.
16. Xu L, Yamamoto A. Characteristics and cytocompatibility of biodegradable polymer film on magnesium by spin coating. Colloids Surf. B 2012; 93: 67-74.
17. Conceicao TF, Scharnagl N, Blawert C, Dietzel W, Kainer KU. Surface modification of magnesium alloy AZ31 by hydrofluoric acid treatment and its effect on the corrosion behavior. Thin Solid Films 2010; 518: 5209-18.
18. Li J, Song Y, Zhang S, Zhao C, Zhang F, Zhang X. In vitro responses of human bone marrow stromal cells to a fluoridated hydroxyapatite coated biodegradable Mg–Zn alloy. Biomaterials 2010; 31: 5782-8.
19. Seitz JM, Eifler R, Vaughan M, Seal C, Hyland M, Maier HJ. Coating systems for biodegradable magnesium applications. In: Magnesium Technology 371-374, Wiley, New York, 2014.
20. Zhao D, Witte F, Lu F, Wang J, Li J, Qin L. Current status on clinical applications of magnesium-based orthopaedic implants: a review from clinical translational perspective. Biomaterials 2017; 112: 287-302.
21. Kose O. Magnesium (MgYREZr) bioabsorbable screws in orthopedic surgery. Military Medicine Worldwide 2019. https://military-medicine.com/article/3830-magnesium-mgyrezr-bioabsorbable-screws-in-orthopedic-surgery.html.
22. Zhao D, Huang S, Lu F, Wang B, Yang L, Qin L. Vascularized bone grafting fixed by biodegradable magnesium screw for treating osteonecrosis of the femoral head. Biomaterials 2016; 81: 84-92.
23. Lee JW, Han HS, Han KJ, et al.. Long-term clinical study and multiscale analysis of in vivo biodegradation mechanism of Mg alloy. Proc Natl Acad Sci 2016; 113: 716-21.
24. Windhagen H, Radtke K, Weizbauer A, Diekmann J, Noll Y, Kreimeyer U. Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: short term results of the first prospective, randomized, controlled clinical pilot study. Biomed Eng Online 2013; 12: 62.
25. Moher D, Liberati A, Tetzla J, Altman UG. Preferred Reporting Items for Systematic reviews and Meta-Analyses: the PRISMA statement. PLoS Med 2009; 6: e1000097.
26. Wells G, Shea B, O’Connel D, Peterson J, Welch V, Losos M. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. Accessed on March 01, 2021.
27. Jadad AR, Moore RA, Carroll D, et al. Assessing the quality of reports of Randomized Clinical Trials: is blinding necessary? Control Clin Trials 1996; 17: 1-12.
28. Yu X, Zhao D, Huang S, et al. Biodegradable magnesium screws and vascularized iliac grafting for displaced femoral neck fracture in young adults. BMC Musculoskelet Disord 2015; 16: 329.
29. Modrejewski CP, Plaass C, Ettinger S, Caldarone F, Windhagen H, Stukenborg-Colsman C. Degradationsverhalten bioabsorbierbarer magnesium-implantate bei distalen metatarsale-1-osteotomien im MRT. Fuß & Sprunggelenk 2015; 13: 156–61.
30. Wichelhaus A, Emmerich J, Mittlmeier T. A case of implant failure in partial wrist fusion applying magnesium-based headless bone screws. Case Rep Orthop. 2016: 7049130.
31. Biber R, Pauser J, Markus G, Bail H J. Magnesium-based absorbable metal screws for intra-articular fracture fixation. Case Rep Orthop 2016; 34: 2207-14.
32. Plaass C, Ettinger S, Son L, Koenneker S, Noll Y, Weizbauer A. Early results using a biodegradable magnesium screw for modified chevron osteotomies. J Orthop Res 2016; 34: 2207-14.
33. Leonhardt H, Franke A, McLeod N M H, Lauer G, Nowak A. Fixation of fractures of the condylar head of the mandible with a new magnesium-alloy biodegradable cannulated headless bone screw. Br J Oral Maxillofac Surg 2017; 55: 623-5.
34. Meier R, Panzica M. First results with a resorbable MGYREZ® compression screw in unstable scaphoid fractures show extensive bone cysts. Handchir Mikrochir Plast Chir 2017; 49: 37-41.
35. Grieve P, O’Carroll S, Albastaki O. Six cas de série de patients de Magnezix®. Une vis métallique absorbable pour la fixation de la fracture du carpe et des fusions entre les carpes. Hand Surg and Rehabil 2017; 36: 488-9.
36. Biber R, Pauser J, Bremb M, Bailab H J. Bioabsorbable metal screws in traumatology: a promising innovation. Trauma Case Reports 2017; 8: 11-5.
37. Gigante A, Setaro N, Rotini M, Finzi S S, Marinelli M. Intercondylar eminence fracture treated by resorbable magnesium screws osteosynthesis: a case series. Injury 2018; 49: S48-53.
38. Kose O, Turan A, Unal M, Acar B, Guler F. Fixation of medial malleolar fractures with magnesium bioabsorbable headless compression screws: short-term clinical and radiological outcomes in eleven patients. Arch Orthop Trauma Surg 2018; 138: 1069-75.
39. Acar B, Kose O, Turan A, Unal M, KatiY A, Guler F. Comparison of bioabsorbable magnesium versus titanium screw fixation for modified distal chevron osteotomy in hallux valgus. Biomed Res Int 2018; 21: 9.
40. Aktan C, Ertan M B, Turan A, Kose O. Fixation of small osteochondral fragments in a comminuted distal humerus fracture with magnesium bioabsorbable screws: a case report. Cureus 2018; 10: e3752.
41. Plaass C, von Falck C, Ettinger S, Sonnow L, Calderone F Weizbauer A. Bioabsorbable magnesium versus standard titanium compression screws for fixation of distal metatarsal osteotomies - 3 year results of a randomized clinical trial. J Orthop Sci 2018; 23: 321-7.
42. Acar B, Unal M, Turan A, Kose O. Isolated lateral malleolar fracture treated with a bioabsorbable magnesium compression screw. Cureus 2018; 10: e2539.
43. Lingling C, Zefeng L, Ming W, Wenhan H, Jin K, Dewei Z. Treatment of trauma-induced femoral head necrosis with biodegradable pure Mg screw-fixed pedicle iliac bone flap. J Orthop Translat 2019; 17: 133-137.
44. Klauser H. Internal fixation of three-dimensional distal metatarsal I osteotomies in the treatment of hallux valgus deformities using biodegradable magnesium screws in comparison to titanium screws. Foot Ankle Surg 2019; 25: 398-405.
45. Atkinson HD, Khan S, Lashgari Y, Ziegler A. Hallux valgus correction utilising a modified short scarf osteotomy with a magnesium biodegradable or titanium compression screws - a comparative study of clinical outcomes. BMC Musculoskelet Disord 2019; 20: 334.
46. Choo JT, Sheng Lai SH, Tang, CQY, Thevendran G. Magnesium-based bioabsorbable screw fixation for hallux valgus surgery - a suitable alternative to metallic implants. Foot Ankle Surg 2019; 25: 727-32.
47. Leonhardt H, Ziegler A, Lauer G, Franke A. Osteosynthesis of the mandibular condyle with magnesium-based biodegradable headless compression screws show good clinical results during a 1-year follow-up period. J Oral Maxillofac Surg 2020; 79: 637-43.
48. Turan A, Kati YA, Acar B, Kose O. Magnesium bioabsorbable screw fixation of radial styloid fractures: case report. J Wrist Surg 2020; 9: 150-5.
49. May H, Kati YA, Gumussuyu G, Emre TY, Unal M, Kose O. Bioabsorbable magnesium screw versus conventional titanium screw fixation for medial malleolar fractures. J Orthop Traumatol 2020; 21: 9.
50. Acar B, Kose O, Unal M, Turan A, Kati YA, Guler F. Comparison of magnesium versus titanium screw fixation for biplane chevron medial malleolar osteotomy in the treatment of osteochondral lesions of the talus. Eur J Orthop Surg Traumatol 2020; 30: 163-73.
51. Phillips B, Ball C, Sackett D et al. Secondary oxford center for evidence-based medicine: levels of evidence. https://www.cebm.ox.ac.uk/resources/levels-of-evidence/oxford-centre-for-evidence-based-medicine-levels-of-evidence-march-2009.
52. Rahim IM, Eifler R, Rais B, Mueller PP. Alkalization is responsible for antibacterial effects of corroding magnesium. J Biomed Mater Res 2015; 103: 3526-32.
53. Böstman O, Pihlajamäki, H. Routine implant removal after fracture surgery: a potentially reducible consumer of hospital resources in trauma units. J Trauma 1996; 41: 846-9.
54. Court-Brown CM, Caesar B. Epidemiology of adult fractures: A review. Injury 2006; 37: 691-7.
55. Schneider M, Loukota R, Kuchta A, et al. Treatment of fractures of the condylar head with resorbable pins or titanium screws: an experimental study. Brit J Oral Max Surg 2013; 51: 421-7.
56. Dijkamn B, Sprague S, Schemitsch, EH, Bhandari M. When is a fracture healed ? Radiographic and clinical criteria revisited. J Orthop Trauma 2010; 24: S76-80.
57. Sukotjo C, Lima-Neto TJ, Santiago Júnior JF, Faverani LP, Miloro M. Is There a Role for Absorbable Metals in Surgery? A Systematic Review and Meta-Analysis of Mg/Mg Alloy Based Implants. Materials 2020; 13: 3914.

Most read articles by the same author(s)

1 2 3 > >>