Understanding the complex role of mTORC as an intracellular critical mediator of whole-body metabolism in anorexia nervosa: A mini review. Anorexia nervosa and the complex role of mTORC

Main Article Content

Nada Alaaraj
Ashraf Soliman
Noor Hamed
Fawziya Alyafei
Vincenzo De Sanctis

Keywords

Key words: Anorexia nervosa, mTOR system, Adaptation, Energy homeostasis, Body Mass Index.

Abstract

Summary. Anorexia nervosa (AN) is a kind of malnutrition resulting from chronic self-induced starvation. The reported associated endocrine changes (adaptive and non-adaptive) include hypothalamic amenorrhea, a nutritionally acquired growth hormone resistance with low insulin like growth factor-1 (IGF-1) secretion, relative hypercortisolemia, decreased leptin and insulin concentrations, and increased ghrelin, PYY and adiponectin secretion. The combined effect of malnutrition and endocrinopathy may have deleterious effects on multi-organs including bone, gonads, thyroid gland, and brain (neurocognition, anxiety, depression, and other psychopathologies). The mammalian target of rapamycin (mTOR) is a kinase that in humans is encoded by the mTOR gene. Recent studies suggest an important role of mTOR complex in integration of nutrient and hormone signals to adjust energy homeostasis. In this review, we tried to elucidate the role/s of mTOR as critical mediator of the cellular response in anorexia nervosa.

Abstract 1053 | PDF Downloads 560

References

1. Andrade R, Gonçalves-Pinho M, Roma-Torres A, Brandão I. Treatment of Anorexia Nervosa: The Importance of Disease Progression in the Prognosis. Acta Med Port. 2017;30:517-523.
2. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed. Arlington, VA: American Psychiatric Publishing; 2013.
3. Moskowitz L, Weiselberg E. Anorexia Nervosa/Atypical Anorexia Nervosa. Curr Probl Pediatr Adolesc Health Care. 2017;47:70-84
4. Hoek HW. Incidence, prevalence and mortality of anorexia nervosa and other eating disorders. Curr Opin Psychiatry. 2006;19:389-394.

5. Lucas AR, Beard CM, O’Fallon WM, Kurland LT. 50-year trends in the incidence of anorexia nervosa in Rochester, Minn.: a population-based study. Am J Psychiatry. 1991; 148:917–922.

6. Pinheiro AP, Root T, Bulik CM. The Genetics of Anorexia Nervosa: Current Findings and Future Perspectives. Int J Child Adolesc Health. 2009;2:153‐164.
7. Zipfel S, Giel KE, Bulik CM, Hay P, Schmidt U. Anorexia nervosa: aetiology, assessment, and treatment. Lancet Psychiatry. 2015;2:1099-111.
8. Olivo G, Gaudio S, Schiöth HB. Brain and Cognitive Development in Adolescents with Anorexia Nervosa: A Systematic Review of fMRI Studies. Nutrients. 2019 Aug 15;11(8):1907.doi: 10.3390/nu11081907.
9. Rikani AA, Choudhry Z, Choudhry AM, Ikram H, Asghar MW, Kajal D, Waheed A, Mobassarah NJ. A critique of the literature on etiology of eating disorders. Ann Neurosci. 2013; 20:157-161.

10. Brown JM, Mehler PS, Harris RH. Medical complications occurring in adolescents with anorexia nervosa. West J Med. 2000;172:189-193.

11. Sharp CW, Freeman CP. The medical complications of anorexia nervosa. Br J Psychiatry. 1993;162:452-462.

12. Palla B, Litt IF. Medical complications of eating disorders in adolescents. Pediatrics. 1988;81:613-623.

13. Umeki S. Biochemical abnormalities of the serum in anorexia nervosa. J Nerv Ment Dis. 1988;176:503-506.

14. Herzog DB, Dorer DJ, Keel PK, Selwyn SE, Ekeblad ER, Flores AT, Greenwood DN, Burwell RA, Keller MB. Recovery and relapse in anorexia and bulimia nervosa: a 7.5-year follow-up study. J Am Acad Child Adolesc Psychiatry. 1999;38829-837.

15. Schulze U, Neudörfl A, Krill A, Warnke A, Remschmidt H, Herpertz-Dahlmann B. Verlauf und Heilungserfolg der frühen Anorexia nervosa [Follow-up and treatment outcome of early anorexia nervosa]. Z Kinder Jugendpsychiatr Psychother. 1997;25 :5-16. German.

16. Fisher M. The course and outcome of eating disorders in adults and in adolescents: a review. Adolesc Med. 2003;14:149-158.

17. Fichter MM, Quadflieg N, Hedlund S. Twelve-year course and outcome predictors of anorexia nervosa. Int J Eat Disord. 2006;39:87-100.
18. Saxton RA, Sabatini DM. mTOR Signaling in Growth, Metabolism, and Disease. Cell. 2017; 168:960–976.
19. Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev.2004;18:1926– 1945.
20. Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell.2012; 149: 274–293.
21. Kim DH, Sarbassov DD, Ali SM, et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell.2002; 110: 163–175.
22. Sancak Y, Thoreen CC, Peterson TR, et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell.2007;25: 903–915.
23. Haissaguerre M, Saucisse N, Cota D. Influence of mTOR in energy and metabolic homeostasis. Mol Cell Endocrinol.2014; 397: 67–77.
24.Yu JH, Kim MS. Molecular mechanisms of appetite regulation. Diabetes Metab J. 2012; 36:391-398.
25. Muta K, Morgan DA, Rahmouni K. The role of hypothalamic mTORC1 signaling in insulin regulation of food intake, body weight, and sympathetic nerve activity in male mice. Endocrinology. 2015;156:1398-1407
26. Cota D, Proulx K, Smith KA, et al. Hypothalamic mTOR signaling regulates food intake. Science.2006 312: 927–930.
27. Phornphutkul C, Wu KY, Auyeung V, Chen Q, Gruppuso PA. mTOR signaling contributes to chondrocyte differentiation. Dev Dyn. 2008;237:702‐712.
28. Yoon MS. The Role of Mammalian Target of Rapamycin (mTOR) in Insulin Signaling. Nutrients. 2017;9:1176. doi: 10.3390/nu9111176.
29.Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012; 149:274-293.
30. Hu F, Xu Y, Liu F. Hypothalamic roles of mTOR complex I: integration of nutrient and hormone signals to regulate energy homeostasis. Am J Physiol Endocrinol Metab. 2016 ;310:E994-E1002.
31. Ricoult SJ, Manning BD. The multifaceted role of mTORC1 in the control of lipid metabolism. EMBO Rep. 2013;14:242-251
32. Paolella LM, Mukherjee S, Tran CM, et al. mTORC1 restrains adipocyte lipolysis to prevent systemic hyperlipidemia. Mol Metab. 2020;32:136-147.
33. Sengupta S, Peterson TR, Laplante M, Oh S, Sabatini DM. mTORC1 controls fasting-induced ketogenesis and its modulation by ageing. Nature. 2010;468:1100-1104
34. Han J, Wang Y. mTORC1 signaling in hepatic lipid metabolism. Protein Cell. 2018;9:145‐151.
35. Laplante M, Sabatini DM. An emerging role of mTOR in lipid biosynthesis. Curr Biol. 2009;19(22):R1046-R1052. doi:10.1016/j.cub.2009.09.058.
36. Brandys MK, Kas MJ, van Elburg AA, Campbell IC, Adan RA. A meta-analysis of circulating BDNF concentrations in anorexia nervosa. World J Biol Psychiatry. 2011;12:444-454.
37. Andrae H, Eckart S, Merle JV, et al. Serum brainderived neurotrophic factor and peripheral indicators of the serotonin system in underweight and weight-recovered adolescent girls and women with anorexia nervosa. J Psychiatry Neurosci. 2009; 34: 323–329.
38. Ho EV, Klenotich SJ, McMurray MS, Dulawa SC. Activity-Based Anorexia Alters the Expression of BDNF Transcripts in the Mesocorticolimbic Reward Circuit. PLoS One. 2016;11(11):e0166756. doi:10.1371/journal.pone.0166756.
39. Takei N, Furukawa K, Hanyu O, Sone H, Nawa H. A possible link between BDNF and mTOR in control of food intake. Front Psychol. 2014;5:1093.doi:10.3389/fpsyg.2014.01093.
40. Mao Z, Zhang W. Role of mTOR in Glucose and Lipid Metabolism. Int J Mol Sci. 2018;19(7):2043. Published 2018 Jul 13. doi:10.3390/ijms19072043.
41. Muta K, Morgan DA, Rahmouni K. The role of hypothalamic mTORC1 signaling in insulin regulation of food intake, body weight, and sympathetic nerve activity in male mice. Endocrinology. 2015;156:1398-1407.
42. Pocai A, Lam TK, Gutierrez-Juarez R, et al. Hypothalamic K(ATP) channels control hepatic glucose production. Nature. 2005;434:1026-1031.
43. Powolny AA, Wang S, Carlton PS, Hoot DR, Clinton SK. Interrelationships between dietary restriction, the IGF-I axis, and expression of vascular endothelial growth factor by prostate adenocarcinoma in rats. Mol Carcinog. 2008;47:458–465.
44. Frystyk J, Delhanty PJ, Skjaerbaek C, Baxter RC. Changes in the circulating IGF system during short-term fasting and refeeding in rats. Am J Physiol. 1999;277: E245–52.
45. Wolfe A, Divall S, Wu S. The regulation of reproductive neuroendocrine function by insulin and insulin-like growth factor-1 (IGF-1). Front Neuroendocrinol. 2014;35:558-572.
46. Srivastava VK, Hiney JK, Dees WL. Manganese-Stimulated Kisspeptin Is Mediated by the IGF-1/Akt/Mammalian Target of Rapamycin Pathway in the Prepubertal Female Rat. Endocrinology. 2016;157:3233-3241.
47. Roa J, Garcia-Galiano D, Castellano JM, Gaytan F, Pinilla L, Tena-Sempere M. Metabolic control of puberty onset: new players, new mechanisms. Mol Cell Endocrinol.2010; 324:87–94.
48. Roa J, Garcia-Galiano D, Varela L, et al. The mammalian target of rapamycin as novel central regulator of puberty onset via modulation of hypothalamic Kiss1 system. Endocrinology.2009;150:5016–5026.
49. Kaye W. Neurobiology of anorexia and bulimia nervosa. Physiol Behav. 2008;94:121 ‐135.
50. Polman JA, Hunter RG, Speksnijder N, et al. Glucocorticoids modulate the mTOR pathway in the hippocampus: differential effects depending on stress history. Endocrinology. 2012;153:4317-4327.
51. Heine VM , Maslam S , Zareno J , Joëls M , Lucassen PJ.Suppressed proliferation and apoptotic changes in the rat dentate gyrus after acute and chronic stress are reversible. Eur J Neurosci.2004;19:131–144.
52. Myrvang AD, Vangberg TR, Stedal K, et al. Hippocampal subfields in adolescent anorexia nervosa. Psychiatry Res Neuroimaging. 2018;282:24-30.
53. Lavagnino L, Amianto F, Mwangi B, et al. The relationship between cortical thickness and body mass index differs between women with anorexia nervosa and healthy controls. Psychiatry Res Neuroimaging. 2016;248:105-109.
54. Lavagnino L, Mwangi B, Cao B, Shott ME, Soares JC, Frank GKW. Cortical thickness patterns as state biomarker of anorexia nervosa. Int J Eat Disord. 2018;51:241-249.
55. LiCausi F, Hartman NW. Role of mTOR Complexes in Neurogenesis. Int J Mol Sci. 2018;19(5):1544. doi:10.3390/ijms19051544.
56. Braun TP, Marks DL. The regulation of muscle mass by endogenous glucocorticoids. Front Physiol. 2015 Feb 3;6:12. doi: 10.3389/fphys.2015.00012.
57. Marzola E, Nasser JA, Hashim SA, Shih PA, Kaye WH. Nutritional rehabilitation in anorexia nervosa: review of the literature and implications for treatment. BMC Psychiatry. 2013 Nov 7;13:290. doi: 10.1186/1471-244X-13-290.
58. Kim SG, Buel GR, Blenis J. Nutrient regulation of the mTOR complex 1 signaling pathway. Mol Cells. 2013;35:463-473.
59. Grinspoon S, Thomas L, Miller K, Herzog D, Klibanski A. Effects of recombinant human IGF-I and oral contraceptive administration on bone density in anorexia nervosa. J Clin Endocrinol Metab. 2002;87:2883-2891.
60. Zakzanis KK, Campbell Z, Polsinelli A. Quantitative evidence for distinct cognitive impairment in anorexia nervosa and bulimia nervosa. J Neuropsychol.2010;4: 89-106.
61. Grau A, Magallón-Neri E, Faus G, Feixas G. Cognitive impairment in eating disorder patients of short and long-term duration: a case-control study. Neuropsychiatr Dis Treat. 2019;15:1329-1341.
62. Gillberg IC, Råstam M, Wentz E, Gillberg C. Cognitive and executive functions in anorexia nervosa ten years after onset of eating disorder. J Clin Exp Neuropsychol. 2007;29:170–178.
63. Tenconi E, Santonastaso P, Degortes D, et al. Set-shifting abilities, central coherence, and handedness in anorexia nervosa patients, their unaffected siblings and healthy controls: exploring putative endophenotypes. World J Biol Psychiatry. 2010;11:813–823.
64. Hausenblas HA, Cook BJ, Chittester NI. Can exercise treat eating disorders? Exerc Sport Sci Rev 2008;36:43–47.
65. Lloyd BA, Hake HS, Ishiwata T, et al. Exercise increases mTOR signaling in brain regions involved in cognition and emotional behavior. Behav Brain Res. 2017;323:56-67.