
Introduction

Immune cells are migratory cells that move from
one tissue to another and within each tissue. The im-
munological activation of defense functions is a com-
plex, multistep process largely driven by direct or solu-
ble factors-mediated communications between immu-
ne cells themselves, between immune cells and en-
dothelia and between immune cells and pathogens or
transformed cells. A correct communication is the es-
sential component of the functional integration in the
immune system. Of course, as the immune functions
are flexible, communication among immune cells must
be flexible: morphological stability is not required here.

Immunological synapses

The immunological synapses (IS) were originally
described as junctions between T cells and antigen-
presenting cells (APC) (1, 2) therefore subordinate to
the T cell-APC adhesion (3, 4). Any T cell-APC or
target-cell interface involved in information transfer
could be described as IS (5). Observation of protein
segregation at contacts between Natural Killer (NK)
cells and target cells or B cells, extended the concept

of IS to these immunological effectors, as well. The IS
structure can be stable for several hours and, although
its organization shows variations related to the players
involved (3, 6, 7), its formation is a process characteri-
zed by two main phases, defined on a morphological
and molecular basis: i) immature IS, presenting an
early, non-definitive protein organization; ii) mature
IS, that develop in the order of minutes, with a protein
arrangement consisting of a central and a peripheral
supramulecular activation cluster (c-SMAC and p-
SMAC, respectively) (see for extensive review 8).

T-helper cells form immature IS in which talin
and leukocyte function-associated molecule-1 (LFA-
1) are clustered in the c-SMAC, while T-cell receptor
(TCR) localizes in the p-SMAC. The maturation of
the synapse is characterized by the inversion of this ar-
rangement: the mature IS presents talin and LFA-1 at
the periphery with the TCR now localized in the c-
SMAC (3, 4). It is not yet clear the mechanism by
which in the IS the interaction of TCR with the major
histocompatibility complex (MHC) is stabilized. It is
supposed that the stabilization process involves a
TCR-MHC-peptide-dependent oligomer formation
(9) or an irreversible refolding process, which could be
related to the self-catalyzed protein refolding in other
systems (10).
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Cytotoxic T-cells or lymphocytes (CTL) form
immature IS characterized by TCR clusters surroun-
ded by LFA-1 (11). Maturation of the IS leads to a c-
SMAC with two segregated domains, TCR and lytic
granules (12, 13). NK-cells initially form IS by SH2-
domain-containing phosphotyrosine phosphatase-1
(SHP-1) clustered in small areas surrounded by LFA-
1 (13, 14). Cytoskeletal rearrangement conveys the ly-
tic granules in the c-SMAC surrounded by LFA-1
(14, 15).

The role of IS is not yet clear in all details. For su-
re IS represents the origin of intracellular signals that
each cell integrates giving rise to an appropriate func-
tional response. The IS maturation itself should be
considered as an evolutive process in which the diffe-
rent steps can mediate different signals. For instance,
a mature IS is not required to initiate T-cell activation
(16). Moreover, the cytoskeleton involvement in the
effects downstream IS formation is different in NK
cells and CTL: a mild perturbation of cytoskeletal
rearrangement can block cytolytic activity in NK cells
but not in CTL. This has been related to the different
regulation of cytotoxicity in the two cell types, i.e. mo-
re stringent by univocal TCR recognition in CTL, de-
licately tuned by a balance of activatory and inhibitory
signals in NK cells (17). One common function of IS
however seems to be directing the secretion of cytoki-
nes or lytic granules, which require mature IS (13, 18,
19). Among the different immunological effectors, T
cells offer a more complete picture. The protein accu-
mulation at the IS can increase the rate of TCR trig-
gering, potentiating signalling (20). The fact that
TCR ligation likely contributes to signalling while
undergoing internalization is suggested by the obser-
vation that TCR stimulation leads to increased surfa-
ce transport of TCRs, effectively supplying the cell
with more receptors to facilitate  sustained signalling
(21). At the initial binding of TCR cognate peptide-
MHC ligands, 1-20 engaged TCRs (22) are sufficient
to start signalling, consisting in local tyrosine pho-
sphorylation and in intracellular Ca2+ elevation (16).
The downstream signalling cascade activates in se-
quence phosphatidylinositol 3-kinase (PI3K), Rho
GTPases (23, 24), protein kinase B/Akt (23, 25). The
persistent TCR signalling induces the accumulation of
surface receptors and other signalling molecules, such

as LFA-1. Other receptors move within the lipid rafts,
that form the platforms for the assembly of the si-
gnalling complexes (26). CD4, CD28, CTLA-4,
CD9, tyrosine kinase Lck and the adaptor protein
linker for activated T cells (LAT), that are all molecu-
les providing costimulation and signalling integration,
were found associated to the raft at the IS (27, 28).

In the cSMAC of maturing IS, TCR colocalize
with the isoform θ of the protein kinase C (PKCθ),
wich cooperates with the phosphatidylinositol-3-ki-
nase (P13K) and CD28 to reinforce and prolong TCR
signalling (3, 23, 29). TCR clustering promotes a pro-
cess of “inside-out” signalling to LFA-1, that requires
adaptor proteins, such as ADAP and SKAP-55 (30),
and actin dynamics (31), ultimately leading to the se-
gregation of LFA-1 in the pSMAC, where it remains
connected to the cortical actin cytoskeleton by talin
(30) (Fig. 1).

Signal integration

T-cell activation requires a prolonged intracellular
signaling over several hours (32); however, the signal
emanating from each single TCR is short-lived, so it is
necessary a countinuous TCR triggering to sustain si-
gnalling, which would otherwise drop down (33, 34).
Around this concept the current theory supports the
idea that small and short signals that alone are unable
to trigger a T-cell response are summed up over time to
reach the threshold level, with a higher efficiency if the
triggered receptors are in close proximity. Low affinity
ligands would therefore enhance T-cell responses  in-
duced by agonists adding their transient signals to the
main one. Consequently, the extent of temporal sum-
mation in the presence of low affinity ligands is higher
than that achieved by agonist alone (35). Moreover, the
costimulation seems to play a central role in the stabi-
lization of TCR-induced tyrosine phosphorilation
(36), acting as an amplifier at the IS, where TCR and
ligands are packed in a limited space (37, 38).

The concept of IS as the molecular and morpho-
logical basis of communication in the immune system
provides a model that has analogies with – and is, af-
ter all, derived from – neurosciences. At least for T-
cells – where the model is better understood – signal
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summation and integration at the single cell level de-
termines the type and extent of cellular response. Mo-
st experimental immunology has been devoted to the
dissection of specific receptor-ligand interactions and
their down-stream signalling, and relevant advances
have been achieved in these last decades by this
methodological approach, separating the odds and
ends. Neurosciences teach immunologists now that,
with few exceptions, single interactions and their
down-stream signalling essentially describe in vitro si-
tuations that may not resemble the real cell regulation
systems that are rather the integrated product of a se-
ries of signals from different sources that are brought
to the cell in that specific period of time in that speci-
fic anatomical/molecular environment.
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