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LECTURE

Hypothesis: Musculin is a hormone secreted by skeletal
muscle, the body’s largest endocrine organ.

Introduction

Evidence for actions on the endocrine pancreas to restrain the p-cell mass
and to inhibit insulin secretion and on the hypothalamus to co-ordinate the
neuroendocrine and appetite responses to exercise

Dennis Engler

Division of Endocrinology and Metabolism, Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia

Abstract. Recent studies indicate that skeletal muscle may act as an endocrine organ by secreting inter-
leukin-6 (IL-6) into the systemic circulation. From an analysis of the actions of IL-6 and of additional lit-
erature, we postulate that skeletal muscle also secretes an unidentified hormone, which we have named Mus-
culin (Latin: musculus = muscle), which acts on the pancreatic -cell to restrain the size of the -cell mass and
to tonically inhibit insulin secretion and biosynthesis. It is suggested that the amount of Musculin secreted is
determined by, and is positively correlated with, the prevailing insulin sensitivity of skeletal muscle, thereby
accounting for the hyperinsulinemia that occurs in insulin resistant disorders such as type 2 diabetes melli-
tus, obesity, and the polycystic ovary syndrome. In addition, it is postulated that Musculin acts on the hypo-
thalamus (arcuate nucleus, dorsomedial hypothalamic nucleus) to co-ordinate the neuroendocrine and ap-
petite responses to exercise. However, the possibilities that Muscu/in may act on additional central nervous
system sites and that an additional hormone(s) may be responsible for these actions are not excluded. It is
suggested that a search be made for Muscu/in, since analogues of such a substance may be of therapeutic ben-
efit in the treatment of the current global diabetes and obesity epidemic. (www.actabiomedica.it)

Key words: Musculin, skeletal muscle hormone, exercise, pancreatic beta cell, hypothalamus, growth hor-
mone, adrenocorticotropin, prolactin

then phosphorylate and activate the Signal Transducer
and Activator of Transcription (STAT-3) in many cell

The concept that skeletal muscle may act as an
endocrine organ has received credence from studies of
the effects of exercise on plasma concentrations of in-
terleukin-6 (IL-6) and IL-6 gene expression in skele-
tal muscle. IL-6 is a member of a family of cytokines
that share a similar helical protein structure and a si-
milar receptor subunit (1). IL-6 exerts its cellular ef-
tects by binding to membrane-bound or soluble IL-6
receptors and the liganded receptor(s) then associa-
te(s) with the membrane-bound glycoprotein gp130
(2). The IL-6r-gp130 heterodimer activates members
of the Janus-activated protein kinases (JAKSs) which

types. As a result of STAT-3 activation, IL-6 activates
a family of proteins including the Suppressor of Cy-
tokine Signaling (SOCS) protein, SOCS-3 (3).

IL-6 is produced by cells of the reticuloendothe-
lial and immune systems as well as keratinocytes,
osteoblasts, adipose tissue, smooth muscle and skeletal
muscle cells (1,4). Although skeletal myocytes produ-
ce IL-6 in response to those inflammatory stimuli that
also release the cytokine from monocytes and cardiac
myocytes, skeletal myocytes appear unique in their
ability to release IL-6 in response to muscle contrac-
tion and in the absence of inflammation (5). The con-
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traction-induced rise in IL-6 gene transcription seems
predominantly localized to the type 2 fibers and may
be mediated by a rise in cytosolic Ca® that occurs du-
ring the contractile process (6).

During exercise, glucose disposal increases but
hypoglycemia is prevented by a concomitant increase
in hepatic glucose production (HGP). The increased
HGP that occurs during exercise of moderate inten-
sity is thought to be mainly due to an increased portal
venous glucagon:insulin ratio, although exercise of
more severe intensity also stimulates the secretion of
growth hormone (GH), epinephrine (EPI), and corti-
sol. Since the time course with which these counterre-
gulatory factors increase cannot account for the rapid
exercise-induced increase in HGP, it has long been su-
spected that an as yet unidentified factor released from
skeletal muscle might contribute to the increased
HGP. It now appears that IL-6 may partly, or wholly,
fulfil the criteria of this so-called “work factor” (Figu-
re 1) and since plasma levels of IL-6 positively corre-
late with exercise intensity, IL-6 may become an im-
portant stimulus of HGP as exercise intensity increa-
ses (7-12).

IL-6 acts as an insulin antagonist in the liver by
inhibiting glycogen synthase activity and accelerating
glycogen phosphorylase activity (13). The cytokine al-
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Figure 1. Schematic presentation of the biological effects of
muscle-derived IL-6. TG, triglyceride; FFA, free fatty acid;
TNEF, tumor necrosis factor. (reproduced with permission from
ref. 4)

so induces SOCS-3 expression in the liver iz vitro and
in vivo which inhibits hepatic insulin receptor au-
tophosphorylation, insulin receptor substrate-1 (IRS-
1) tyrosine phosphorylation, the association of IRS-1
with the p85 subunit of phosphatidylinositol (PI) 3-
kinase and activation of serine/threonine protein kina-
se Akt (14). By contrast, when IL-6 is depleted in the
leptin-deficient 04/06 mouse by immunoneutralization
with an IL-6 antibody, hepatic insulin sensitivity is se-
lectively increased (15). Although IL-6 acts as an in-
sulin antagonist in the liver, it acts as an insulin sensi-
tizer in skeletal muscle by enhancing the ability of in-
sulin to stimulate muscle glycogen synthesis. These
findings indicate that IL-6 exerts tissue-specific ef-
fects on insulin action (16).

Skeletal muscle structure

The aforementioned studies therefore assign to
skeletal muscle the status of an endocrine gland and,
given its sheer size, it would appear to be the largest of
its kind in the body. Skeletal muscle contains a large
number of genes whose expression is regulated by that
powerful modulator of muscle insulin sensitivity, phy-
sical exercise (17-28). In this section, we provide a
brief outline of the major components of skeletal mu-
scle in order that the reader may obtain a glimpse of
the mechanisms by which muscular contraction may
modify skeletal muscle gene expression (29-35).

The characteristic striated appearance of myofi-
brils as alternating light (I-band) and dark (A-band)
bands results from the precise alignment of the fila-
ment systems of the sarcomere, the basic contractile
unit of the myofibrils. The sarcomere is principally
composed of parallel arrays of actin-containing thin
filaments, the thick myosin-containing filaments, sin-
gle titin molecules, and the giant protein, nebulin (Fi-
gure 2). The actin molecules have been implicated in
diverse cellular functions such as motility, cytokinesis,
and contraction and are anchored in the Z-disc and
span the I-band. The I-region links the A-band, the
region of active force generation, with the bordering
Z-lines, and also contains part of the immense pro-
tein, titin. The actin filaments extend toward the
middle of the sarcomere and, in the A-band, they in-
terdigitate with the myosin-containing thick fila-
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Figure 2. A schematic overview of cytoskeletal linkages in
striated muscle. The sarcomeres contain four filament systems:
actin-thin, myosin-thick, titin, and nebulin filaments. The
borders of individual sarcomeres are the Z-lines, which are
precisely aligned and laterally associated with intermediate fi-
lament proteins (such as desmin) and other cytoskeletal pro-
teins (such as plectin). The intermediate filaments and associa-
ted proteins also may link the peripheral myofibrils to costa-
meres at the sarcolemma (the muscle membrane), to mito-
chondria, and to the nuclear membrane. Although many of the
detailed interactions are not yet known, these linkages are re-
sponsible for the mechanical integration and stability of myo-
fibrils, organelles, and membrane components for effective for-
ce transmission. The microtubule system is not depicted in the
schematic because it is unclear how they are arranged in stria-
ted muscle; however, they may be linked to myofibrils and in-
termediate proteins such as plakin family members (reprodu-
ced with permission from ref. 32)

ments. The M-line region is the anchoring site for the
thick filaments and its appearance is considered to be
the final step in myofibril assembly. The Z-lines defi-
ne the lateral boundaries of the sarcomere, they are the
anchoring sites for the thin, titin, and nebulin fila-
ments, and are thus the primary means of transmis-
sion of the force generated by contraction.

The third filament system is made up of the hu-
ge modular protein, titin. The N-terminal ends of ti-
tin overlap in the Z-line, the titin molecules span the
I- and A-bands and their C-terminal ends overlap in
the M-line, thus forming a continuous filament sy-
stem in the myofibrils. Titin possesses several distinct
properties-first, it may function as a molecular spring

and thus determine myofibrillar stiffness; second, titin
contains repeating motifs, it is assembled early in
myofibrillogenesis and it interacts with several sarco-
meric components, and may therefore stabilize the
sarcomere; third, the titin C-terminal region contains
a serine-threonine kinase domain which has been re-
cently shown to control muscle gene expression and
protein turnover (34). These findings provide a struc-
tural basis by which physical exercise may modify ske-
letal muscle gene expression, including key proteins of
the insulin signaling pathway (Figure 3).

The fourth filament system is made up of
another giant protein, nebulin, which spans the length
of the actin filaments. The C-terminal end of nebulin
is partially inserted into the Z-lines whereas its N-ter-
minal end extends to the ends of the thin filaments.
Nebulin is inextensible and may therefore specify the

Figure 3. Exercise training-induced changes in insulin signa-
ling in skeletal muscle. Insulin signal transduction through the
insulin receptor, insulin receptor substrate (IRS)-1/2 and pho-
sphatidylinositol 3-kinase (PI3-kinase) is enhanced in skeletal
muscle in the hours after an exercise bout. These changes may
enhance insulin sensitivity, as well as regulate gene expression
after exercise. Immediately after exercise, mitogen-activated
protein kinase (MAPK) signaling to downstream substrates is
enhanced, providing a possible molecular mechanism for exer-
cise-induced transcriptional regulation in skeletal muscle.
Acute exercise also increases AMP-activated protein kinase
(AMPK) activity, leading to changes in glucose uptake and ge-
ne expression. Exercise training is associated with changes in
mRNA of several components of insulin and MAPK signaling
cascades. The “master regulator(s)” of exercise-responses on
gene expression has not been completely defined (reproduced
with permission from ref. 61)
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precise lengths of the thin filaments. Since physical
exercise regulates skeletal muscle genes that code for
proteins of both known and unknown functions, we
postulate that:

* One of these unknown transcripts codes for a hor-
mone which we have named Musculin.

* The amount of Musculin secreted is determined by,
and is positively correlated with, the prevailing in-
sulin sensitivity in skeletal muscle.

* Musculin acts on the endocrine pancreas to restrain
the overall size of the B-cell mass and to tonically
inhibit the B-cell’s capacity to synthesize and secre-
te insulin.

These postulates are depicted schematically in

Figure 4 and are discussed below.

Insulin Sensitivity se—)-

| MUSCULIN |

Figure 4. Schematic representation of the secretion of Muscu-
lin as a function of muscle insulin sensitivity. It is proposed
that Musculin is a hormone released by skeletal muscle that acts
on the pancreatic f cell to restrain f-cell mass and B-cell se-
cretion of insulin. Furthermore, it is suggested that the amount
of Musculin secreted is determined by, and positively correlated
with, muscle insulin sensitivity. The lines around the periphery
of each muscle designate insulin sensitivity. Lef?, increased in-
sulin sensitivity (---); Centre, normal insulin sensitivity (—);
Right, reduced insulin sensitivity (===). The width of the arrows
leading from the skeletal muscles to the pancreas schematical-
ly depict the amount of the hormone Musculin that is secreted

Eavidence that skeletal myocytes contain the intracellular
machinery required for hormone secretion

The suggestion that skeletal muscle may function
as an endocrine organ presupposes that the myocyte is
capable of transporting hormones from their intracel-
lular site of synthesis to the cell surface and of secre-
ting these hormones into the systemic circulation. In-
tracellular proteins that are destined for secretion are
usually transported to the cell surface in vesicles and
this process has been most intensively investigated in
presynaptic nerve terminals (36-39). A brief outline of
the proteins involved in this ‘Synaptic Vesicle Cycle’
and a description of their skeletal myocyte counter-
parts is provided below.

When an action potential causes the opening of
Ca® channels in a nerve terminal, the resulting Ca*
transient stimulates synaptic vesicle exocytosis and
neurotransmitter release (Figure 5, ref. 39). The steps
in the trafficking cycle for synaptic vesicles can be
enumerated as follows: (Step 1) Neurotransmitters are
actively transported into synaptic vesicles and (Step 2)
cluster in front of the active zone. They then dock at
the active zone (Step 3), where they are primed (Step
4) to render them competent for Ca*-triggered fu-
sion-pore opening (Step 5). The synaptic vesicles may
be recycled by either of two fast pathways or one
slower pathway. The fast pathways are preferentially
used when the frequency of nerve stimulation is low,
during which the vesicles either remain at the active
zone and are refilled, or are locally recycled without
clathrin-mediated endocytosis. The slower pathway
involves clathrin-mediated endocytosis and is utilized
at higher frequencies of nerve stimulation. The pro-
cess of membrane fusion involves SNARE proteins
that are characterized by an homologous 70-residue
sequence termed the SNARE motif. The SNARE
proteins are present on both fusing membranes before
fusion and they associate into tight core complexes
during fusion. Vesicle endocytosis is mediated by th-
ree SNARE proteins: i) Synaptobrevin (or Vesicle-
Associated Membrane Protein, VAMP) on the synap-
tic vesicle, (ii) Syntaxin 1 and (iii) SNAP-25 located
on the presynaptic cell membrane (Figure 6).

The scheme shown in Figure 6 proposes that the
SNARE complex pulls the synaptic vesicle and plasma
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Figure 5. The synaptic vesicle cycle. Synaptic vesicles are filled
with neurotransmitters by active transport (step 1) and from
the vesicle cluster that may represent the reserve pool (step 2).
Filled vesicles dock at the active zone (step 3), where they un-
dergo a priming reaction (step 4) that makes them competent

membranes close together and creates an unstable in-
termediate. The intermediate can either progress to a
fusion pore or regress to the docked state of synaptic
vesicles that do not contain engaged SNARESs. Com-
plexins may then bind and stabilize the synaptic core
complex which is essential for the proper positioning
of synaptotagmin 1.

Synaptotagmins 1 and 2 are abundant synaptic
vesicle proteins that act as Ca® sensors for fast exocy-
tosis. Synaptotagmin 1 binds to the SNARE complex
in the absence of Ca*, but switches to binding the
phospholipid membrane when Ca* enters. This may
then destabilize the fusion intermediate and open the
fusion pore. Synaptotagmin 1 is part of a gene family
containing 15 members, and it is possible that one or
more of these other family members mediates Ca*-in-
duced slow exocytosis. SNARE complex formation is
also regulated by SM (Sec1/Munc18-like) proteins,
tomosyn, amisyn and the synaptophysins. Synap-

for Ca* triggered fusion-pore opening (step 5). After fusion-
pore opening, synaptic vesicles undergo endocytosis and recy-
cle via several routes: local reuse (step 6), fast recycling without
an endosomal intermediate (step 7), or clathrin-mediated en-
docytosis (step 8) with recycling via endosomes (step 9). Steps
in exocytosis are indicated by red arrows and steps in endocy-
tosis and recycling by yellow arrows (reproduced with permis-
sion from ref. 39)

tophysins are abundant synaptic vesicle proteins that
bind synaptobrevin and may restrict its availability for
fusion.

These observations are of relevance for sketelal
muscle (and adipocyte) function since synaptobrevins
1 and 2, syntaxin 4, and VAMP 2 and 3 have been

Presynaphic
rerminal

Docked syraplic vesicle: SHAREs
unengaged free synaptotagmin 1/2 hypothetical fusion stalk synaptatagmin C2 domains into
synaptotagmins 1/2 bound to phospholipid bitayer
SNARA complexes

Engaged SNARE complexes with Calcivm Iriggers partial insertion of

Figure 6. Model for the functions of SNARE proteins, complexins, and synaptotamins 1 and 2 in synaptic vesicle exocytosis. In
docked vesicles (panel A), SNAREs and synaptotagmins are not engaged in direct interactions. During priming (panel/ B), SNARE
complexes form, complexins (green) are bound to fully assembled complexes, and synaptotagmins constitutively associate with the
assembled SNARE complexes. The synaptic vesicle membrane and plasma membranes are forced into close proximity by SNARE
complex assembly, which results in an unstable intermediate that is shown as a speculative fusion stalk. Ca* influx (panel C) further
destabilizes the fusion intermediate by triggering the C, domains of synaptotagmin to partially insert into the phospholipids. This
action is proposed to cause a mechanical perturbation that opens the fusion pore. Note that the nature and stability of the putative
fusion intermediate is unclear and that SNARE complex assembly in panel B is suggested to be reversible, whereas Ca* triggering
is not (reproduced with permission from ref. 39)
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found in skeletal myocytes and adipocytes, and
VAMPS5 has been isolated from C,C,, myocytes du-
ring myogenesis. The findings therefore suggest that
mechanisms for the intracellular trafficking of pro-
teins, similar or identical to those described in synap-
tic nerve terminals, also exist in skeletal myocytes (and
adipocytes, 40-49).

Insulin secretion in states of increased muscle insulin sen-
sitivity

Although an increased sensitivity of skeletal mu-
scle to the actions of insulin can be achieved in the
mouse by deletion of the genes coding for the p85f
subunit of phosphoinositide 3-kinase or the gangliosi-
de GM3 (50, 51), the most physiological means of
achieving this effect is by physical exercise. Indeed,
numerous studies have shown that exercise causes an
acute insulin-independent increase in glucose tran-
sport which is followed by an increase in skeletal mu-
scle insulin sensitivity (52-65) that is mediated by
translocation of more GLUT4 glucose transporters to
the myocyte cell membrane (66-77). Exercise acutely
reduces insulin secretion (62-64, 78-92) and increases
glucagon secretion (93-102) and thus alters the portal
venous insulin:glucagon ratio. The rise in portal ve-
nous glucagon is essential for the increased gluconeo-
genesis and HGP and the lowering of portal venous
insulin concentration may restrain these effects of glu-
cagon and prevent hyperglycemia.

Several mechanisms may contribute to these
exercise-induced changes in islet hormone secretion,
and one of these has been thought to be an exercise-
induced alteration in autonomic nervous system func-
tion. The endocrine pancreas is innervated and regu-
lated by both the parasympathetic nervous system de-
rived from neurons in the dorsal motor nucleus of the
vagus (DMYV) and the sympathetic nervous system
derived from cell bodies in the intermediolateral co-
lumn (IML) of the spinal cord. Furthermore, these
cell groups receive either direct or indirect inputs from
second- and third-order neurons located in the pre-
frontal, piriform and gustatory cortices and several
sub-cortical brain areas (Figure 7; 103-111). The pa-
rasympathetic cholinergic nerve fibers innervating the
islets are postganglionic in origin, they originate from
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Figure 7. Sagittal scheme of first-order projections to the pan-
creas (in red), second-order in blue, and third-order in yellow.
It is clear by comparing the parasympathetic pattern against
the sympathetic pattern that far more second-order cell grou-
ps are in control of the dorsal motor nucleus of the vagus than
in control of the sympathetic neurons. The parasympathetic-
sympathetic interaction illustrates the relationship between the
cell groups that may influence the vagal output in green or the
sympathetic output in pink. It is clear that both vagal and sym-
pathetic output are influenced by each other. Abbreviations:
A5/RVLM, rostral ventrolateral medulla; Ace, amygdala cen-
tral part; AP, area postrema; ARC, arcuate nucleus; BNST, bed
nucleus of the stria terminalis; DMH, dorsomedial nucleus of
the hypothalamus; DMV, dorsal motor nucleus of the vagus;
IML, intermediolateral column; INS, insular cortex; LC, locus
ceruleus; LH, lateral hypothalamus, MPO, medial preoptic
area; N'T'S, nucleus tractus solitarius; OVLI, organum vasculo-
sum of the lamina terminalis; PFC, prefrontal cortex; PVN,
paraventricular hypothalamus; RCA, retrochiasmatic area;
SCN, suprachiasmatic nucleus; SFO, subfornical organ;
VMH, ventromedial hypothalamus; ZI, zona incerta (reprodu-
ced with permission from ref. 110)

intrapancreatic ganglia, and terminate close to the islet
endocrine cells (Figure 8). The intrapancreatic ganglia
are in turn controlled by preganglionic fibers which
originate in the DMV, traverse the vagus as part of the
bulbar outflow tract, and enter the pancreas along the
cranial and caudal pancreaticoduodenal arteries. The
adrenergic nerves innervating the islets are also post-
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Figure 8. Schematic view of the innervation of a pancreatic
islet with the main branches of the autonomic nerves (para-
sympathetic nerves, sympathetic nerves, sensory nerves and
other nerves) with their respective neurotransmitters. The four
main types of islet endocrine cells are also illustrated with be-
ta cells (B) forming the central islet portion, whereas an islet
mantle zone harbors alpha cells (A cells, glucagon cells), delta
cells (D cells, somatostatin cells) and F cells (pancreatic poly-
peptide (PP) cells). Afferent vessels (red) and fenestrated effe-
rent vessels (red to blue) are also illustrated (arrows indicate
blood flow direction). Ach = acetylcholine, NO = nitric oxide
(reproduced with permission from ref. 122)

ganglionic and their nerve cell bodies are located in
either the celiac ganglion or the paravertebral sym-
pathetic ganglia. The postganglionic fibers then pass
from the ganglia within the mixed autonomic nerves
and enter the pancreas along its blood vessels.

It has been demonstrated that stimulation of the
vagus (parasympathetic) and splanchnic (sympathetic)
nerves can alter insulin and glucagon secretion. Sti-
mulation of the vagus nerve increases insulin release
by predominantly muscarinic mechanisms, and vagal
non-muscarinic (possibly peptidergic) mechanisms
may mediate changes in glucagon secretion. Stimula-
tion of a—adrenergic receptors inhibits insulin secre-
tion and B-adrenergic stimulation increases insulin re-
lease, whereas both o- and B-adrenergic stimulation

increases the secretion of glucagon (112-122). Howe-
ver, despite the wealth of literature dealing with the
effects of autonomic neural stimulation on islet hor-
mone secretion, it is intriguing to note that complete
denervation of the canine pancreas has no effect on
the 77 vivo insulin and glucagon responses to exercise
(123). These findings indicate that although in vitro
experimental stimulation of the parasympathetic and
sympathetic nervous input to the pancreas does cause
the aforementioned changes in insulin and glucagon
secretion, the autonomic innervation does not appear
essential for the iz vivo generation of islet cell respon-
ses that occur during moderate exercise. Moreover,
these islet cell responses to exercise are unlikely to be
due to muscle-derived IL-6 since this cytokine has
been shown to stimulate, rather than inhibit, 3-cell se-
cretion of insulin (124). To reconcile these observa-
tions, we propose that:

* The acute changes in insulin and glucagon secretion
during moderate exercise are hormonally mediated by
an acute release of Musculin from exercising muscle.

* The autonomic nervous system may become increa-
singly important as a regulator of islet hormone se-
Cretion as exercise intensity increases.

Studies of the acute effects of endurance exercise
on the autonomic nervous system in man suggest that
inhibition of cardiac vagal activity occurs very early af-
ter the onset of exercise, whereas sympathetic activa-
tion occurs later and becomes more pronounced as
exercise intensity increases (125, 126). However, as
judged by measurements of plasma catecholamines
and whole-body norepinephrine (NE) spillover into
plasma, prolonged endurance training actually reduces
sympathetic nervous system activity (127-134). This
reduction in sympathetic nervous system activity is
likely to be a tissue-specific response and has been
shown to occur in the kidney, but not in the heart
(132). To our knowledge, no studies have directly de-
termined the long-term effect of endurance exercise in
animals or man on NE spillover into plasma from the
pancreas but, based on the available evidence, it seems
reasonable to suggest that it would be either reduced
or unaltered, but not increased.

As noted previously, a number of studies have
shown that long-term endurance exercise lowers pla-
sma insulin concentrations. Like most, if not all, en-
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docrine tissues, the B-cell secretes insulin in a pulsati-
le fashion and Engdahl et al. (90) have shown that
long-term endurance exercise reduces the mass of in-
sulin secreted per burst, the burst height and insulin
production rate, but has no effect on the interpulse in-
terval or burst half-duration (Figure 9). If one was to
ascribe these alterations in insulin secretion solely to
an alteration in sympathetic nervous system activity,
one would have to postulate that long-term enduran-
ce exercise had increased pancreatic sympathetic ner-
vous system activity. However, since as noted above,
there is currently no available evidence to suggest that
long-term endurance activity increases NE spillover
into plasma from any organ, this explanation would
appear unlikely. Rather, we postulate that:
* Long-term endurance exercise may upregulate Mu-
sculin synthesis and secretion from skeletal myocytes.
» The resultant increase in serum Musculin concen-
trations may augment the tonic inhibitory regula-
tion of the B-cell, thereby reducing the steady-state

level of insulin in plasma.

Insulin secretion in states of decreased muscle insulin sen-
sthrvity

The concept that resistance to the action of insu-
lin may be pathophysiologically important in some
patients with diabetes was first enunciated by Him-
sworth in the 1930s (135-138). The development of
an insulin bioassay by Bornstein and Lawrence (139)
and the ground-breaking insulin radioimmunoassay
by Yalow and Berson (140) conclusively demonstrated
that hyperinsulinemia was present in type 2 diabetic
patients, and this finding was confimed by others.
Although the meaning of these observations was de-
bated for some years, the measurement of insulin-me-
diated glucose disposal during a continuous infusion
of insulin-glucose-epinephrine-propranolol (141),
and subsequently by the hyperinsulinemic-euglycemic
clamp technique (142), conclusively demonstrated the
defective ability of insulin to increase tissue utilization
of glucose in most patients with type 2 diabetes. It is
now widely appreciated that insulin resistance may an-
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Figure 9A and 9B. Effect of long-term endurance training on pulsatile insulin secretion. Individual pulse profiles for 7 untrained
and 7 trained men. Solid lines, best fit from deconvolution analysis. Nos. at upper left, subject no. for each pair of subjects whose
data are shown side by side were assayed during the same assay. For purposes of comparison, right column shows same data as midd-
le column; however, y-axis has been expanded so that pulses can be visualized. Note: ranges for insulin concentrations on y-axis are
not the same as other panels. Single graph at bottom of panel B represents sample of blood that was assayed in duplicate 75 times

during 1 assay (reproduced with permission from ref. 90)
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tedate the development of diabetes by many years
(144-147), and that the hyperinsulinemia per se may
contribute to the development of dyslipidemia and
hypertension, which in turn increases an individual’s
risk for the development of cardiovascular disease. In
1988, Reaven coined the term Syndrome X (143) to
describe the association of insulin resistance, hyperin-
sulinemia, varying degrees of glucose intolerance and
dyslipidemia, although with the inclusion of nume-
rous other metabolic abnormalities, this nomenclature
has given way to the term “The Insulin Resistance
Syndrome’ (148). A schematic representation of the
mechanisms leading from muscle insulin resistance to
Impaired Glucose Tolerance and frank Diabetes is
shown in Figure 10.

The molecular basis of insulin resistance in insu-
lin target tissues has been the focus of intense resear-
ch during the last decade (149-170). Studies by Hota-
misligil and coworkers have demonstrated that obesity
activates cellular stress signaling and inflammatory
pathways in the adipocyte and it now appears that the

stress signals originate in the endoplasmic reticulum
(ER) (151-153, 166, 167, 170). The ER is involved in
the secretion and processing of membrane proteins,
but biological insults such as infection, hypoxia, or ex-
posure to excess lipids can disrupt ER function, cau-
sing unfolded or misfolded proteins to accumulate in
the ER lumen. To compensate for this stress, the ER
activates a transcriptional program termed the ‘unfol-
ded protein response’ which slows protein synthesis
and promotes protein degradation (Figure 11). This
sequence of events impairs insulin receptor signaling
in the adipocyte (and liver) of obese animals and re-
sults in insulin resistance in these tissues. However,
ER stress seems not to be present in the skeletal mu-
scle of obese animals (167), suggesting that alternati-
ve mechanisms must underly insulin resistance in this
site.

Since skeletal muscle accounts for up to 80% of
the total daily insulin-mediated glucose disposal in
man, insulin resistance in skeletal muscle must contri-
bute significantly to the insulin resistance defect in
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Figure 10. Metabolic Staging of Type 2 Diabetes. Type 2 Dia-
betes is characterized by a progressive decrease in insulin ac-
tion, followed by an inability of the f cell to compensate for in-
sulin resistance. Insulin resistance is the first lesion, due to in-
teractions among genes, aging, and metabolic changes produ-
ced by obesity. Insulin resistance in visceral fat leads to increa-
sed fatty acid production, which exacerbates insulin resistance
in liver and muscle. The p cell compensates for insulin resi-
stance by secreting more insulin. Ultimately, the f cell can no
longer compensate, leading to impaired glucose tolerance and
diabetes (reproduced with permission from ref. 161)

Figure 11. No stress relief for the Endoplasmic Reticulum
(ER). The metabolic and inflammatory stresses of obesity di-
srupt the smooth operation of the ER and cause protein mi-
sfolding. The ER attempts to cope with stress by activating
XBP-1, a transcriptional regulator of the unfolded protein re-
sponse (UPR). If these responses fail to restore homeostasis,
stress-induced IRE1 activates JNK1, a serine kinase that op-
poses insulin action. Impaired insulin signaling might serve to
alleviate intracellular stress, but it does so at the expense of sy-
stemic glucose regulation. FFA, free fatty acids; ROS, reactive
oxygen species (reproduced with permission from ref. 166)
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most, if not all, patients with diabetes (142). Althou-
gh insulin resistance can be selectively induced in ske-
letal muscle of laboratory animals by deletion of those
genes coding for the GLUT4 glucose transporter and
the insulin receptor (Figure 12), as well as PPARy and
caveolin-3 (154, 160, 162-164, 168), the studies of
Shulman and coworkers point towards mitochondrial
dysfunction as being perhaps the most important me-
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Figure 12. Changes in glucose homeostasis and adiposity with
muscle-specific or adipose-specific ablation of GLUT4 or IR.
A, muscle-G4KO mouse. Ablation of GLUT4 from muscle
(green box) decreases both insulin- and exercise-induced gluco-
se uptake in muscle resulting in hyperglycemia, hyperinsuline-
mia, and secondary insulin resistance in the liver and adipose
tissue. Insulin resistance in the liver and adipose tissue may be
caused, at least partly, by glucose toxicity (red curves). B, mu-
scle-IRKO (or MIRKO) mouse. Ablation of IR in muscle
(green box) decreases muscle mass but does not change plasma
glucose or insulin levels or glucose tolerance. Contraction-sti-
mulated glucose uptake remains normal. Increased glucose up-
take into adipose tissue increases adipose mass, serum triglyce-
rides, and free fatty acids. Whether muscle releases a factor
that directly acts on adipose tissue is unknown (b/ue curve).C,
adipose-G4KO mouse. Ablation of GLUT4 in adipose tissue
(green box) does not alter adipose mass, but results in insulin re-
sistance in liver and muscle and systemic hyperinsulinemia.
This is most likely due to altered secretion of an unknown mo-
lecule(s) from adipose tissue (red curves). Blood glucose is in-
creased in some of the adipose-G4KO mice (symbol +). D, adi-
pose-IRKO (or FIRKO) mouse. In contrast to the adipose-
G4KO mouse, ablation of IR in adipose tissue (green box) de-
creases adipose mass, lowers fasting insulin levels, and may in-
crease energy expenditure. This may, in part, be driven by
changes in adipocyte-secreted molecules (blue arrow). Red, in-
sulin resistance; b/ue, insulin action or sensitivity (reproduced
with permission from ref. 162)

chanism underlying common forms of skeletal muscle
insulin resistance (150, 155, 156, 158, 165, 169, Figu-
re 13).With the use of *C NMR spectroscopy to mea-
sure the rate of [1-**C]glucose incorporation into mu-
scle glycogen, these investigators have demonstrated
that muscle glycogen synthesis is the major pathway
for glucose metabolism in both normal and diabetic
individuals during steady-state hyperglycemic, hype-
rinsulinemic conditions and that muscle glycogen
synthesis is ~50% lower in diabetics. Furthermore, the
data suggest that insulin-stimulated glucose transport,
rather than defective hexokinase II activity, is the rate-
limiting step for muscle glycogen synthesis and is re-
duced in diabetic subjects.

,L me density/function

Figure 13. Potential mechanism by which mitochondrial dy-
sfunction induces insulin resistance in skeletal muscle. In the
depicted model, a decrease in mitochondrial fatty acid oxida-
tion, caused by mitochondrial dysfunction and/or reduced mi-
tochondrial content, produces increased levels of intracellular
fatty acyl CoA and diacylglycerol. These molecules activate
novel protein kinase C, which in turn activates a serine kinase
cascade [possibly involving inhibitor of nuclear factor kB ki-
nase (IKK) and c-jun N-terminal kinase-1], leading to increa-
sed serine phosphorylation (pS) of insulin receptor substrate-1
(IRS-1). Increased serine phosphorylation of IRS-1 on critical
sites (e.g.IRS-1 Ser”) blocks IRS-1 tyrosine (Y') phosphory-
lation by the insulin receptor, which in turn inhibits the acti-
vity of phosphatidylinositol 3-kinase (PI 3-kinase). This inhi-
bition results in suppression of insulin-stimulated glucose tran-
sport, the process by which glucose is removed from the blood.
PIP3 indicates phosphatidylinositol 3,4,5-trisphosphate; PTB,
phosphotyrosine binding domain; PH, pleckstrin homology
domain; SH2, src homology domain (reproduced with permis-
sion from ref. 169)
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The finding of an inverse relationship between
plasma free fatty acid concentrations, intramuscular
triglyceride content and insulin sensitivity provides
evidence for a causal relationship between altered fatty
acid metabolism and insulin resistance in diabetes
(156, 157). In the 1960s, Randle et al. (149) suggested
that an increased supply of fatty acids competed with
glucose for oxidation to increase intracellular levels of
acetyl CoA and citrate. This was thought to lead to an
inhibition of pyruvate dehydrogenase and phospho-
fructokinase which was thought to then increase in-
tracellular glucose and glucose-6-phosphate concen-
trations, thereby resulting in reduced insulin-stimula-
ted glucose uptake. This idea has essentially been re-
futed and it is now thought that fatty acids alter cellu-
lar activation of the protein kinase C isozymes, epsi-
lon and theta, and cause serine phosphorylation of
IRS-1, thereby abolishing insulin-stimulated IRS-1-
associated PI-3 kinase activity and reducing glucose
transport. Recently, insulin resistance in healthy, non-
diabetic elderly individuals has also been shown to be
due to increased intramyocellular fatty acid metaboli-
tes causing the aforementioned cascade of events
(165). The findings may be due to an age-related re-
duction in mitochondrial oxidation and phosphoryla-
tion capacity, due either to a reduction in number
and/or function of the mitochondria with advancing
age.

Although, as stated above, the net effect of these
changes in the intracellular milieu of the insulin-resi-
stant adipocyte and myocyte is to reduce insulin-me-
diated glucose transport, tissue-specific differences in
glucose transporter protein abundance in these cells
have been reported (171-175). For example, the re-
duction in glucose uptake into the adipocyte is due in
large part to decreased abundance of the GLUT4 pro-
tein consequent upon a reduction in GLUT4 mRNA
expression in that tissue. In contrast, GLUT4 abun-
dance and mRNA expression are not significantly al-
tered in the myocyte, and the defect in glucose tran-
sport into that tissue may be largely due to defective
trafficking of the GLUT4 protein from the cytosol to
the cell membrane. This defect may be a consequence
of alterations in levels (and/or function) of the vesicle
transport proteins cellubrevin, VAMP-2, and syn-
taxin-4. Such alterations have been found in the ske-

letal muscle of the Zucker diabetic fatty rat, a model
of type 2 diabetes (49). Furthermore, the correction of
these abnormal levels by the restoration of normoin-
sulinemia, and their absence in the streptozotocin-
diabetic rat model of type 1 diabetes, suggests that hy-
perinsulinemia per se, rather than hyperglycemia, is re-
sponsible for these changes. From these observations,
we postulate that:
* Perturbations of the vesicular transport proteins in
the insulin-resistant myocyte could contribute fo de-
Jfective transport to the cell surface of other intracel-
lular myocyte proteins.
* These perturbations could provide a structural basis
for the suggestion that Musculin secretion may be
defective in insulin resistant states.

The regulation of the pancreatic 3-cell mass

Although it was previously thought that the p-
cell mass was static, it is now believed to be dynamic
and, at any moment in time, total 3-cell number is the
result of a balance between neogenesis, replication,
and apoptosis (176-180). For example, the first two
weeks of the neonatal rat’s life is characterized by
marked B-cell mitosis and neogenesis which is fol-
lowed by a wave of P-cell apoptosis from postnatal
days 13 to 24. During the first three weeks of life, -
cell mass and body weight are not tightly correlated
and, during this time, large fluctuations in the con-
centration of 3-cell peptides have been observed (181-
184). However, from day 24 onwards, 3-cell mass and
body weight are highly correlated, although the factors
responsible for this tight regulation are unclear. The
demonstration in the mouse that pre-existing, termi-
nally differentiated (-cells, rather than pluripotent
stem cells, are the major source of new B-cells formed
during adult life and following partial pancreatectomy
(185,186), implies a role for cell cycle regulation in
this process.

The mammalian G1 cyclins and their associated
kinases (cdk) integrate extracellular mitogenic signals
and regulate the cell division cycle (187-192, Figure
14). The three D-type cyclins (D1, D2, and D3) bind
to and regulate one of two cdk subunits, cdk4 and
cdké, as well as the E-type cyclins (E1 and E2) whi-

ch, in similar fashion, govern the activity of a single
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Figure 14. G1-to-S cell cycle control. Production of D-type
cyclins and activation of cdk 4/5 in response to mitogens re-
sults in phosphorylation and inactivation of pRB (and family
members) with consequent derepression of E2F-dependent
transcription. This results in cyclin E and A synthesis, activa-
tion of cdk2 and further pRB phosphorylation. The activity of
cdk 4/6 is opposed by pl6INK4a, produced in response to
stress, or by other members of the INK4 family, produced in
response to differentiation signals. In a conceptually similar
manner, the activity of cdk2 is opposed by members of the
CIP/KIP family of inhibitors, also produced in response to
stress and differentiation signals. In contrast to INK4 proteins,
CIP/KIP inhibitors can act as assembly factors for
cycD/cdk4(6) complexes, and can be titrated away from cdk2
by these D cyclin-containing complexes (reproduced with per-
mission from ref. 192)

catalytic subunit, cdk2. Mitogen-induced signal tran-
sduction pathways promote the activation of cyclin D-
cdk complexes which then inactivate two classes of
cell cycle inhibitors. The cdks also phosphorylate Re-
tinoblastoma (Rb) protein family members (Rb, p107,
and p130) thus inactivating their transcriptional co-
repressor activities. This process controls an E2F-de-
pendent transcriptional program that activates a bat-
tery of genes whose products are required for DNA
replication and metabolism.

The relevance of this information is highlighted
by the demonstration that cyclin D2 is expressed in

the nuclei of a subset of -cells and that deletion of
the cyclin D2 gene has revealed an essential role for
cyclin D2 in the normal postnatal development of the
f-cell mass. In addition, the B-cells of cyc/in D27 mi-
ce are unable to upregulate expression of the remai-
ning D-cyclins and eventually develop glucose intole-
rance. However, in all other respects, cyc/in D27 mice
are phenotypically indistinguishable from control ani-
mals (186). In addition, Cdk4” mice also display de-
fective P-cell proliferation and develop insulin-defi-
cient diabetes, indicating that Cdk4 acts in partner-
ship with cyclin D2 to regulate cell cycle progression
in B-cells (194). However, in contrast to cyc/in D2
mice, Cdk4” animals are smaller than normal and in-
fertile, indicating that Cdk4 may play a more general
role in development.

In addition, studies in rodents and man have de-
monstrated that the -cell mass increases in insulin
resistant states, although the magnitude of the effect is
far greater in the rodent. The generation of double he-
terozygous IR/IRS-1"" mice causes severe muscle in-
sulin resistance, a 2.6-fold rise in plasma insulin con-
centrations, a 2-30-fold (mean: 10-fold) increase in -
cell mass, and eventual diabetes (195). Moreover, an
analysis of human pancreata obtained at autopsy has
shown that the relative f-cell volume is increased by
~50% in obese versus lean nondiabetic individuals, an
effect that is due to increased islet neogenesis, since
the frequency of apoptosis did not differ significantly
between the two groups (196). With these findings in
mind, we postulate that:

* A decline in Musculin secretion that occurs as a con-
sequence of decreased skeletal muscle insulin sensiti-
vity could stimulate B-cell neogenesis by upregula-
ting B-cell cyclin D2 and/or Cdk4 gene expression
(Figure 15).

In this regard, it is noteworthy that a precedent
for the hormonal regulation of Cyclin gene expression
has been established by the studies of Sicinski et al
(197) which have shown ovarian Cyclin D2 to be a
follicle-stimulating hormone (FSH) -responsive gene.
The finding that B-cell hyperplasia occurs in JR/IRS*
mice before the development of hyperglycemia has led
to the suggestion that a factor(s) in addition to gluco-
se, is responsible for the expansion of the B-cell mass
in the mouse (195), and the studies of Flier et al (198)
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Figure 15. Metabolic Staging of Type 2 Diabetes. This figure
is a modification of Figure 10 and proposes that the hyperin-
sulinemia that occurs as a consequence of skeletal muscle insu-
lin resistance is due to a reduction in a tonic inhibitory regula-
tion of insulin secretion and synthesis by the pancreatic $-cell.
The inhibitory regulation is postulated to be due to secretion
of a putative skeletal muscle hormone termed Musculin and
decreased skeletal muscle insulin sensitivity (or increased ske-
letal muscle insulin resistance) is proposed to result in reduced
secretion of the hormone

also lend support to this hypothesis. These authors
transplanted wild-type (W'T) islets under the kidney
capsule of IR/IRS-1"" and 0b/0b mice and in both ca-
ses, the P-cell volume increased significantly, due to
increased f-cell mitosis. In contrast, islets from
IR/IRS-1"" mice, when transplanted into WT reci-
pients, displayed a reduced mitotic index. However,
the authors were unable to specify the nature of this
factor or ascertain its source. In previous studies, Kahn
and colleagues (154, 199) have reported the effects of
the conditional inactivation in mice of the insulin re-
ceptor in liver (LIRKO) or muscle (MIRKO), and no-
ted marked islet hyperplasia in the LIRKO animals,
but normal sized islets in the MIRKO mice. The
authors therefore suggested that the findings did not
lend support to the notion that this mitogenic factor
was of skeletal myocyte origin, although whether the
perturbation of the intracellular milieu that follows a
complete loss of muscle insulin receptor function is
identical to that which results from mitochondrial dy-
sfunction causing the common form of human insulin
resistance remains to be determined.

Evidence that musculin may act on the hypothalamus to
coordinate the neuroendocrine and appetite response to
exercise

It has long been appreciated that acute exercise
causes a neuroendocrine response that includes repro-
ducible and robust increases in serum GH, adrenocor-
ticotropin (ACTH), and prolactin and less marked in-
crements in serum thyrotropin (T'SH), FSH, oestra-
diol and progesterone (in women), and testosterone in
men (200-245). In view of these findings and in the
interest of space, only the possible mechanisms un-
derlying the GH, ACTH, and prolactin responses to
exercise are discussed below. Physical exercise also
produces a change in appetite characterized by short-
term anorexia (246-254). In order to facilitate an un-
derstanding of the possible mechanisms by which the-
se adaptations are mediated, we firstly provide a brief
outline of the hypothalamic regulation of anterior pi-
tuitary hormone secretion and of the anatomy and
connections of the hypothalamic nuclei that are likely
to be involved.

The hypothalamic regulation of anterior pituitary hor-

mone secretion
GH

The two main hypothalamic neuropeptides that
regulate GH secretion are GH-Releasing Factor
(GRF) and Somatostatin (255, 256, Figure 16). A
third important stimulatory input to GH secretion is
provided by the peptide Ghrelin that is released from
the stomach (257), but Ghrelin will not be further di-
scussed in this manuscript since its plasma concentra-
tions are unaffected by exercise (258). GH stimulates
the hepatic production of Insulin-Like Growth Fac-
tor-1 (IGF-1) which then exerts a negative feedback
on GH by stimulating the hypothalamic release of so-
matostatin and by decreasing GH secretion and gene
expression in the anterior pituitary (259-262).

Human GRF is a 44-residue neuropeptide that
was originally isolated from a human pancreatic tumor
that caused acromegaly (263, 264). GRF is synthesi-
zed in the arcuate nucleus (ARC) of the hypothalamus
and GRF axons abut the long portal vessels from whe-
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re the peptide is secreted in a pulsatile manner into the
hypophysial-portal circulation (265, 266). GRF binds
to a specific receptor on the somatotropic cell mem-
brane and results in an increase in cyclic AMP and
Ca*; concentrations, an activation of protein kinase A,
and a stimulation of GH secretion and GH gene ex-
pression (267-271).

Somatostatin-14 (SRIF, SS-14) is present in se-
veral hypothalamic areas including the anterior peri-
ventricular area and the ARC, but it is only the ante-
rior periventricular area which sends axons to the ex-
ternal zone of the median eminence from where the
peptide enters the hypophysial-portal circulation (266,
272-274). SS-14 acts on specific receptor(s) on the so-
matotrope cell membrane and reduces Ca*; concen-
trations, decreases GH secretion and suppresses the
GRF-induced increase in GH gene transcription.
However, S5-14 does not seem to exert an appreciable
effect on basal GH gene transcription (275-278).

ACTH

It has been traditionally thought that the hy-
pothalamus only exerts a stimulatory influence upon
the secretion and synthesis of ACTH and that this is
mediated by the neuropeptides corticotropin-relea-
sing factor (CRF), arginine vasopressin (AVP), and
oxytocin (OT) which are secreted into the hypophy-
sial-portal circulation (279-284, Figure 17). ACTH
then stimulates the adrenocortical secretion of corti-
sol which exerts a negative feedback effect on ACTH
release by acting on hypothalamic and extrahypotha-
lamic brain sites as well as on the anterior pituitary
corticotropes.

However, studies of the hypothalamic-pituitary-
adrenal (HPA) axis in animals in which the pituitary
has been surgically disconnected from the hypothala-
mus have suggested that the hypothalamus may exert
both stimulatory and inhibitory regulation over
ACTH secretion and proopiomelanocortin (POMC)
biosynthesis, and the inhibitory regulation has been
postulated to be mediated by a currently unidentified
substance termed Corticotropin Release-Inhibitory
Factor (282, Figure 18).

CREF is a 41-residue peptide that is the most po-
tent ACTH secretagogue in the rat although its abi-

Figure 16. A schematic re-
presentation of the current
model of the regulation of
Growth Hormone secre-
tion. The hypothalamus
both stimulates and inhibits
Growth Hormone (GH)
secretion by  secreting
Growth Hormone-Relea-
sing Factor (GRF) and So-
matostatin (SRIF) into the
hypophysial-portal circula-
tion. GH then stimulates
the hepatic production of
Insulin-Like Growth Fac-
tor-1 (IGF-1) which exerts
a stimulatory effect on hy-
pothalamic SRIF release
and an inhibitory effect at
the level of the anterior pi-
tuitary to decrease GH re-
lease and biosynthesis.
Although not shown in the
diagram, GH release is also
stimulated by the stomach-
derived peptide Ghrelin
which acts on a specific an-
terior pituitary receptor

lity to stimulate ACTH secretion is potentiated seve-
ral-fold by agonists such as AVP, OT, angiotensin 1I,
NE and EPI (285, 286). However, CRF may not be
the most potent ACTH secretagogue in all species as

Figure 17. A schematic re-
presentation of the current
model by which the hy-
pothalamus is thought to
regulate ACTH secretion.
This model proposes that
the hypothalamus only sti-
mulates ACTH secretion
by secreting neuropeptides
such as CRF and AVP into
the hypophysial-portal cir-
culation. ACTH then sti-
mulates the adrenocortical
production of cortisol, whi-

CRF, AVP

PITUITARY ch then restrains the secre-
tion of ACTH by exerting

* negative feedback effects

ACTH En the anterior pituit.ary,
ypothalamus, and various

* extrahypothalamic  brain

sites (reproduced with per-
mission from ref. 282)
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Figure 18. A postulated
bidirectional model of the
way the hypothalamus may
regulate ACTH secretion.
This is a model that postu-
lates that the hypothala-
mus may both stimulate
and inhibit ACTH secre-
tion. Moreover, it suggests
that the hypothalamic
inhibition of ACTH relea-
se is mediated by the secre-
tion of a single CRIF.
However, it is possible that
several substances could
cooperate to mediate the
inhibition by acting in an
analogous fashion to the

ACTH stimulatory interaction of
CRF and AVP (reprodu-
+ ced with permission from
L CORTISOL ref. 282)

it appears to be equipotent with AVP in the bovine
species and in the ovine species, AVP appears to be
even more potent than CRF (287-289). In the rat,
CRF is the only hypothalamic neuropeptide known to
increase POMC biosynthesis, and none of the afore-
mentioned ACTH secretagogues are able to potentia-
te this effect of the peptide (290-294). CRF exerts its
effects on the anterior pituitary by binding to a speci-
fic adenylate cyclase-linked receptor. The binding of
the hormone to the corticotropic cell membrane re-
sults in increased intracellular concentrations of
cAMP, an increased influx of extracellular Ca*, and an
activation of protein kinase A and phosphorylation of
a number of intracellular proteins (295-302).

AVP is also secreted into the hypophysial-portal
circulation and acts on the anterior pituitary to stimu-
late ACTH release. AVP is a weak ACTH secretago-
gue in the rat and in man, although as noted above,
this order of potency may not pertain in all species.
AVP binds to the V1b receptor on the corticotropic
cell which is coupled to the PI signaling pathway and
therefore hormone binding increases the production
of inositol 1,4,5-trisphosphate (IP;) and diacylglycerol
(303-319, DG). The DG is required for the activation
of protein kinase C which phosphorylates a number of
intracellular substrates. The IP; causes the liberation
of Ca* from intracellular stores and, together with the

influx of extracellular Ca*, causes the rise in Ca*; that
is required to mediate ACTH release.

Prolactin

Prolactin is synthesized by the lactotropes of the
anterior pituitary gland which possess a high intrin-
sic hormonal secretory activity and are under tonic
hypothalamic inhibitory control mediated by dopa-
mine (DA) in the hypophysial-portal circulation
(320-324, Figure 19). Therefore, the ability of a given
stimulus to reduce the tonic inhibitory effects of DA
on the lactotrope is a cardinal, but not the sole, me-
chanism that increases prolactin secretion. The ante-
rior pituitary lactotropic D2 DA receptor is coupled
to Gi;o and DA binding causes inhibition of the
adenylate cyclase and inositol phosphate metabolism,
inhibition of Ca* channels, and excitation of voltage-
sensitive K channels (325-328). However, DA with-
drawal also leads to activation of protein kinase A
which causes phosphorylation of intracellular sub-
strates including Ca” channels, thereby increasing
the probability of Ca* channels being open, and pro-
moting the influx of extracellular Ca*. In this man-

Figure 19. A schematic repre-
sentation of the regulation of
prolactin secretion. The hy-
pothalamic Tuberoinfundibular
Dopamine neurons (TIDA) se-
crete Dopamine (DA) into the
hypophysial-portal circulation
which exerts a dominant inhibi-
tory influence on the anterior
pituitary lactotrophs to restrain
prolactin secretion and synthe-
sis. The activity of the TIDA
neurons are in turn subjected to
both positive and negative regu-
lation by numerous hypothala-
mic amines and neuropeptides.
The hypothalamus also stimula-
tes prolactin secretion by secre-
ting neuropeptides such as Thy-
rotropin-Releasing  Hormone
(TRH), Vasoactive-Intestinal
Peptide (VIP) and Oxytocin
(OT) into hypophysial-portal
blood. Prolactin in turn restrains
its own secretion by means of an
ultra-short loop feedback effect
that involves stimulation of

TIDA neuronal activity

PROLACTIN




Musculin is a skeletal muscle-derived hormone

171

ner, DA potentiates the prolactin-releasing activity of
secretagogues such as Thyrotropin-Releasing Hor-
mone (TRH) which predominantly act by the pro-
tein kinase C pathway (329, 330). In contrast to GH
and ACTH which stimulate the synthesis of additio-
nal hormones in peripheral target organs that in turn
restrain their secretion by negative feedback effects
on the pituitary and hypothalamus, prolactin regula-
tes its own secretion by a positive short-loop feed-
back mechanism that involves activation of those tu-
beroinfundibular neurons that project to the external
zone of the median eminence (331, 332). As alluded
to above, additional regulatory inputs to prolactin se-
cretion exist in the form of hypothalamic releasing
factors, the best studied of which are TRH, vasoacti-
ve intestinal peptide (VIP) and OT.

TRH was initially isolated as a hypophysiotropic
factor capable of stimulating TSH secretion from an-
terior pituitary cells but was subsequently found to sti-
mulate prolactin release both iz wvitro and in wvive.
TRH is secreted into the hypophysial-portal circula-
tion and the TRH receptor is located in the anterior
pituitary, specifically on lactotropes and thyrotropes
(333-340). The binding of TRH to its receptor activa-
tes phospholipase C which initiates a cascade of intra-
cellular signaling events that are similar, or identical,
to those produced by the aforementioned binding of
AVP to the anterior pituitary V1b receptor (341, 342).
As noted above, several studies indicate that transient
DA antagonism, or withdrawal, may augment TRH-
stimulated prolactin secretion, although whether tu-
beroinfundibular neurons are ever truly quiescent un-
der physiological conditions is open to conjecture.

VIP was initially isolated from porcine small inte-
stine but VIP-immunoreactive(-ir) perikarya are also
found in the hypothalamic paraventricular nucleus
(PVH). VIP-ir is found in nerve terminals in the ex-
ternal zone of the median eminence from where the
peptide is secreted into hypophysial-portal blood (343-
346). VIP binds to a specific receptor on the anterior
pituitary and causes an activation of the adenylate cy-
clase, a rise in Ca*; and phosphorylation of a set of in-
tracellular proteins that are distinct from those pho-
sphorylated by TRH (347-351). Studies employing the
technique of VIP immunoneutralization with specific
VIP antisera have shown that VIP is entirely responsi-

ble for the ether stress-induced rise in prolactin. Mo-
reover, VIP is required for the acute prolactin response
to suckling and is one of the prolactin releasing factors
required for maintenance of the hyperprolactinemia in
continuously suckling animals (352).

OT synthesized in the parvocellular part of the
PVH as well as the periventricular nucleus (Pv) rea-
ches the anterior pituitary by secretion into the long
portal vessels. In addition, the OT synthesized in the
magnocellular divisions of the PVH and the supraop-
tic nucleus (SON) is transported by axoplasmic flow
to the posterior pituitary from where it may reach the
adenohypophysis by means of the short portal vessels
which connect the neural lobe with the inner zone of
the anterior lobe (353-355). The oxytocinergic neu-
rons in turn receive inhibitory inputs from VIP neu-
rons originating in the suprachiasmatic nucleus
(SCN). OT binds to a specific receptor on lactotropes
and causes a dose-related increase in prolactin release
in vitro and Ca®; concentrations in these cells (356,
357). Studies employing specific OT antisera have
shown that endogenous OT is likely to be one factor
that mediates the prolactin response to suckling and
studies with OT antagonists indicate that OT is re-
quired for the prolactin rise on the afternoon of proe-
strus, but is not involved in the prolactin response to
ether stress (358, 359). Stimulation of the uterine cer-
vix during mating also causes unique nocturnal and
diurnal surges of prolactin secretion and a role for OT
in mediating this response is demonstrated by the
abolition of the afternoon rise in prolactin and OT by
injection of VIP antisense oligonucleotides into the
SCN (357).

Taken together, these findings indicate that mul-
tiple hypothalamic factors regulate the release of pro-
lactin and that the various components of this system
can be activated in a stimulus-specific manner.

The hypothalamic nuclei involved in the regulation of
anterior pituitary hormone secretion and appetite

PVH

The PVH lies on either side of the third ventri-
cle and can be divided into at least eight clearly defi-
ned subdivisions (Figure 20).
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Figure 20. A schematic diagram to show the major cell groups
of the paraventricular nucleus of the hypothalamus in the rat,
as viewed from above. The three parts of the magnocellular di-
vision are shown in szipple and are embedded in the parvocel-
lular division, which consists of five parts. The abbreviations
are as follows: am, anterior magnocellular; ap, anterior parvo-
cellular, dp, dorsal parvocellular; 1p, lateral parvocellular; mm,
medial magnocellular; mp, medial parvocellular; pm, posterior
magnocellular ; pv, periventricular (reproduced with permis-

sion from ref. 282)

Three of these are magnocellular (anterior, me-
dial, posterior) that project to the posterior pituitary
and five are parvocellular (periventricular, anterior, me-
dial, dorsal, lateral) which project to the external zone
of the median eminence and are also interrelated with
autonomic cell groups in the brain stem and spinal
cord via bidirectional pathways (360-362). The PVH is
also connected with a number of brain regions, and
prominent among these are the forebrain, the limbic
system and the brainstem. For example, the parvocel-
lular part of the PVH receives moderately dense
projections arising from all areas of the hypothalamus
(except the SON, the medial and lateral mamillary nu-
clei, and the magnocellular division of the PVH), from
the subfornical organ and the bed nucleus of the stria
terminalis, but the magnocellular divisions receive rela-
tively few inputs from these structures (363). The PVH
is also densely innervated by aminergic and peptidergic
axon terminals that arise from cell bodies located in
brainstem nuclei. The aminergic terminals contain
NE, EPI, DA, and serotonin and, of these, the nora-
drenergic and adrenergic projections have been subjec-
ted to the most detailed analysis.

Aminergic innervation

The noradrenergic input to the PVH arises al-
most exclusively from three interrelated cell groups in

the brainstem, namely the A2 region in the nucleus of
the tractus solitarius (NTS), the Al region in the
ventrolateral medulla, and the A6 area in the locus ce-
ruleus (364, Figure 21). The fibers from the Al re-
glon are almost entirely directed toward the magno-
cellular divisions and preferentially terminate on va-
sopressinergic cell bodies. The projections arising
from the A6 area are almost entirely distributed to the
parvocellular PVH, and their most prominent input
is localized in the periventricular zone, an area known
to contain DA-, somatostatin- and TRH-stained
neurons.

The ascending adrenergic projections to the
PVH are also derived from three discrete brainstem
cell groups (365), namely the C1 group (in the rostral
ventrolateral medulla), the C2 group (in the rostral
part of the NTS), and the C3 group (in the medial
longitudinal fasciculus and nucleus prepositus hypo-
glossi). However, in contrast to the highly differentia-

o NEus

Figure 21. The brainstem catecholaminergic and NPY-immu-
noreactive innervation of the PVH. Schematic drawing of a sa-
gittal section through the rat brain to indicate the dominant
biochemical makeup and distribution of catecholaminergic
and NPY-immunoreactive inputs from the brainstem to the
PVH. Adrenergic (E) projections arise from the C1, C2, and
C3 regions, are distributed overwhelmingly to the parvicellular
(pc) division of the nucleus, and generally stain positive for
NPY immunoreactivity. Noradrenergic (NE) projections from
the locus ceruleus and A2 cell groups are also distributed pri-
marily to the parvicellular division, but are, for the most part,
NPY negative. A heterogeneous input arises from the Al re-
gion and is distributed to both the parvicellular division and
preferentially to those parts of the magnocellular division in
which vasopressinergic neurons (V) predominate over oxytoci-
nergic ones (0). One component appears also to contain NPY
immunoreactivity, whereas a second one does not (reproduced
with permission from ref. 282)
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ted noradrenergic projections of the PVH, the projec-
tions from each of the adrenergic cell groups are very
similarly distributed within the PVH, and in each ca-
se, the most dense innervation is seen in the dorsal
medial parvocellular part, an area that is rich in CRF-
stained neurons.

Peptidergic innervation

The PVH is also innervated by peptidergic axon
terminals such as those that stain for neuropeptide Y
(NPY) and galanin (GAL).

NPY is a 36-residue peptide that was originally
isolated from porcine brain and has a high degree of
sequence homology with peptide YY and pancreatic
polypeptide (366). NPY-stained perikarya and axon
terminals are widely distributed within the brain and
the PVH and ARC, respectively, contain the highest
density of NPY-stained axon terminals and perikarya
in the brain (367-372). NPY is extensively colocalized
within brainstem adrenergic neurons that project to
the PVH, while its expression in noradrenergic neu-
rons appears limited to a subpopulation of cells in the
A1 group. NPY-stained projections are most dense in
the anterior and medial parvocellular parts of the
PVH, and these areas are known to contain CRF- and
TRH-stained neurons.

GAL is a 29-residue peptide that was first isola-
ted from porcine intestine but is also widely distribu-
ted in the central nervous system (373-379). Within
the hypothalamus, GAL-stained perikarya are found
in the ARC where they coexist in a large proportion
of tyrosine hydroxylase (TH)-positive cells, and in the
magnocellular and parvocellular PVH, where a large
proportion of cells stain for both GAL and AVP.
GAL-ir perikarya are also found in the locus ceruleus
(A6 area) and in the caudal part of the A2 area, whe-
re they coexist within a large number of the noradre-
nergic neurons. In addition, the rostral parts of the A2
and C1 areas also contain GAL-positive perikarya
which do not stain for TH. GAL-ir perikarya are also
found in a number of other brain areas which likely do
not participate in the regulation of hypothalamo-hy-
pophysial secretion. The PVH receives a prominent
galaninergic input of fibers and rostrally the most pro-
minent inputs are confined to the anterior and peri-

ventricular parts of the nucleus, whereas caudally the
dorsal and ventral medial subdivisions are the most
heavily innervated. These GAL-ir fibers arise from
the Al and A6 areas, the ARC, the dorsomedial nu-
cleus (DMH), the LHA and the medial preoptic area
(377).

Neuropeptides synthesized in the PVH

The PVH also contains a number of neuropepti-

des but for the purposes of this manuscript, we will li-
mit our discussion to CRF, AVP, TRH, and VIP.

CRF

The rat brain contains about 2,000 CRF-stai-
ned perikarya distributed throughout all eight parts
of the PVH, and most of these cells are found in the
parvocellular division (380, 381). The medial, peri-
ventricular, and medial lateral parts of the parvocel-
lular division contain about half of the total number
of CRF-stained neurons, and these areas are known
to send massive projections to the external zone of
the median eminence. Furthermore the CRF neu-
rons in the parvocellular division of the PVH may be
subdivided into two populations that are distingui-
shed by the colocalization of the AVP precursor
(pro-AVP)-derived peptides AVP, the vasopressin-
neurophysin (NP) or the pro-AVP C-terminal gly-
copeptide (382, 383). The CRF neurons receive axo-
nal inputs that stain for NPY, TH, dopamine-f-hy-
droxylase, Cocaine and Amphetamine-Regulated
Transcript (CART), glutamate (GLU), Glucagon
like peptide-1 and Pituitary Adenylate Cyclase-Ac-
tivating Polypeptide (PACAP), indicating that they
are subject to a wide variety of influences (370, 384-
388, Figure 22). About 15% of the total CRF-stai-
ned population is found in those areas of the magno-
cellular division that predominantly contain oxytoci-
nergic cells and in addition to the PVH, CRF-stai-
ned cells are also found in the basal hypothalamus,
telencephalon, and brainstem, and these areas are in-
volved in the functioning of the autonomic nervous
system. Finally, CRF-stained cells are found scatte-
red throughout the cerebral cortex where they are
concentrated in layers II and III.
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VIP was originally isolated from hog small inte-
stine and subsequently found to be widely distributed
in the central and peripheral nervous systems (389-

o
Figure 22. Innervation of the PVH by PNMT, DBH and

NPY immunoreactive fibers. Darkfield photomicrographs of
avidin-biotin immunoperoxidase preparations to show the di-
stribution of fibers and varicosities stained for phenylethanola-
mine-N-methyltransferase (PNMT), dopamine-f-hydroxyla-
se (DBH), and neuropeptide Y (NPY') immunoreactivity at a
similar level through the paraventricular nucleus (PVH; the
third ventricle is at the extreme left of each micrograph). At
this midcaudal level, basic similarities and differences in the
density of each input may be appreciated, although in these
thicker (30-35 wM) sections, details of the distributions cannot
necessarily be inferred. Note that the distribution of PNMT-
stained elements is largely limited to a discrete part of the par-
vicellular division of the nucleus; few are seen in the magno-
cellular division. The DBH-stained projection encompasses
and exceeds that localized with anti-PNMT, providing a pro-
minent input to the magnocellular division, which is located at
the right-hand margin of the nucleus at this level. The NPY-
stained input encompasses and exceeds the distribution and
density provided by DBH-immunoreactive inputs, providing
perhaps the most prominent chemically specified input to the
PVH yet described (reproduced with permission from ref. 282)

396). At least four different VIP systems exist within
the brain — 1) an intracerebral cortical system; 2) one
innervating the amygdala and bed nucleus of the stria
terminalis; 3) a pathway originating in the SCN, and
4) another originating the midbrain central grey. VIP-
stained perikarya can be visualized in the untreated
animal in the limbic and neocortex, in the SCN and in
the central grey of the midbrain. However, adrenalec-
tomy and lactation combined with colchicine treat-
ment results in the appearance of a large population of
VIP-stained perikarya in the parvocellular part of the
PVH and increases the number of VIP-stained fibers
in the external zone of the median eminence (391). In
addition, the induction of hypothyroidism also allows
the detection of VIP mRNA in these PVH neurons
(395, Figure 23). These findings provide an anatomi-
cal basis for the previously described role of VIP as a
prolactin-releasing factor during lactation and indica-
te that VIP synthesis in the PVH is regulated by the
thyroid status of the animal.

TRH
Within the hypothalamus, the TRH-producing

neurons are found in the anterior, lateral, dorsal and
medial parts of the parvicellular PVH, and in the an-
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terior periventricular area. Moreover, these TRH neu-

rons receive a variety of axonal inputs including those
that stain for NPY, GAL, CART, Agouti-related pro-
tein (Agrp), and a-melanocyte-stimulating hormone.
These inputs originate from the ARC, the DMH, and
the brainstem, indicating that TRH neurons are regu-
lated in a highly complex manner (397-405). In addi-
tion, TRH-stained neurons are also found in the basal
part of the anterior and lateral hypothalamus, the pe-
rifornical area and DMH, where they are likely to
subserve functions other than the regulation of TSH
and PRL secretion.

ARC

The ARC surrounds the ventral part of the third
ventricle and communicates primarily with the pitui-
tary gland, hypothalamus, limbic system, midbrain
periaqueductal gray and brainstem autonomic nuclei
(406, 407). In addition, the ARC contains receptors
for glucocorticoids, estradiol, insulin, leptin and GH
(408-413) and in this way, it integrates emotional
and sensory stimuli and peripheral signals relating to
an individual’s metabolic status, which it may then
relay to the those brain areas concerned with the re-
gulation of the endocrine and autonomic nervous sy-
stems.

Figure 23. Effect of hypothyroidism on
VIP mRNA. Darkfield photomicrograph
of coronal sections through the hypotha-
lamic paraventricular nucleus (PVN)
(A,B) and thalamic ventrolateral (VLN)
(C, D) nuclei on the same tissue sections.
Sections were hybridized with a *S-labe-
led rat VIP mRNA antisense probe. No-
te presence of hybridized cells in the
PVN only in the hypothyroid animal (B)
but conspicuous absence in the euthyroid
control (A). Arrow denotes the PVN; III
= third ventricle (reproduced with per-
mission from ref. 395)

Neuropeptides synthesized in the ARC

At least fifteen neurotransmitters and neuropep-
tides have been found in arcuate perikarya but for the
purposes of this review, we will focus on GRF and the
Central Melanocortin System which includes those

neurons which express NPY and Agrp, and POMC.
GRF

As noted above, GRF perikarya are located in the
ARC and the GRF staining in the ARC and external
zone of the median eminence is obliterated by treat-
ment of neonatal rats with the ARC toxin monoso-
dium GLU, indicating that the ARC is the source of
GREF that enters the hypophysial-portal circulation
(265, 414-417). Neurotensin is colocalized within a
subset of these GRF-ir neurons, but colocalization of
GRF with o-melanocyte stimulating hormone or

ACTH (1-24) has not been demonstrated.
The Central Melanocortin System

The mammalian central melanocortin system is
defined as a collection of circuits that include (i) ARC
neurons that express NPY and Agrp (NPY/Agrp) and
POMC, (ii) POMC neurons originating in the NTS
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in the brainstem and (iii) downstream targets of these
neurons that express the melanocortin-3 and melano-

cortin-4 receptors (MC3-R and MC4-R) (418, 419) .
NPY/Agrp neurons

As stated above, the ARC contains the highest
density of immunoreactive NPY perikarya of any area
in the brain (367, 368). The ARC NPY neurons pro-
vide the major NPY-ir input to CRF-, AVP-, and
TRH-stained neurons in the PVH (370, 401, 420),
they project to the SON and form synapses with
AVP-ir neurons (421), and they also provide ~50% of
the NPY innervation to the gonadotropin-releasing
hormone neurons in the medial preoptic area (422).
These fiber projections provide the anatomic basis for
the established roles of NPY in regulating the hy-
pothalamic-pituitary-adrenal, -thyroid, and -gonadal
axes. In addition, NPY is the most powerful orexige-
nic peptide known and its administration to experi-
mental animals causes a robust and sustained increase
in food intake, an effect that is partly mediated by the
Y2 NPY receptor (423, 424). NPY also decreases the
sympathetic outflow to brown adipose tissue in the rat
and may thereby decrease the metabolic rate
(425).The ARC NPY neurons are major targets for
the action of insulin and leptin and these aspects are
discussed below.

Agrp was isolated in 1997 and is a 132-residue
peptide that is a homolog of the skin agouti peptide
(426, 427). The skin agouti peptide is an antagonist of
the MC1-R on melanocytes (428) whereas Agrp is an
antagonist of brain MC3-R and MC4-R receptors
(427, 429). Agrp-ir perikarya are found exclusively in
the ARC where the peptide is colocalized within

~95% of the NPY neurons (430, 431). The ARC sends
dense fiber projections to the hypothalamus and septal
region and within the hypothalamus, the most dense
fiber staining is seen to proceed along the third ventri-
cle as well as in the Pv nucleus, the parvocellular PVH,
the DMH, and the rostral end of the posterior nucleus
(432, Figure 24). Those hypothalamic areas devoid of
Agrp-positive fibers include the magnocellular PVH,
the SON, the SCN, the ventromedial nucleus and the
compact zone of the DMH (Figure 25).

POMC neurons

The POMC gene codes for the 241-residue pro-
tein POMC and is expressed in the pituitary and
in many non-pituitary tissues (433-439). POMC mR-
NA is most abundant in the pituitary, but its content in
most of the non-pituitary tissues is extremely low and
the generated mRNAs are truncated, non-functional
transcripts that cannot be efficiently translated. POMC
is a prototypical polypeptide precursor which contains
eight pairs, and one quadruplet, of basic amino acids
which are potential cleavage sites for processing enzy-
mes (Figure 26), and the nature of the POMC products
in any given tissue therefore reflects which cleavage si-
tes are used. For example, only four of the cleavage sites
are used in the anterior pituitary corticotrope and the
peptides produced include N-terminal peptide (NT),
joining peptide (JP), ACTH, B-lipotropin (p-LPH)
and a small amount of y-LPH and pB-endorphin. The
ARC also expresses the POMC peptide but, in this nu-
cleus, all the cleavage sites are used and smaller pepti-
des are produced — NT gives rise to the y-melanocyte-
stimulating hormones (yMSHs), ACTH yields a-MSH
and CLIP (corticotropin-like intermediate lobe pepti-

Figure 24. Immunohistochemistry demon-
strates dense hypothalamic neuronal fibers
expressing AGRP in the diestrous rat.
AGRP immunoreactivity is found in hy-
pothalamic fibers projecting from the ARC
as well as in the PVH (a) and DMH and PH
nuclei (b). Preadsorption with the immuni-
zing peptide AGRP-(83-132) blocks the
staining reaction (c). Bars, 100 um (reprodu-
ced with permission from ref. 432)
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Figure 25. Schematic diagram of a sagittal view of the rat brain, illustrating the comparative distributions of POMC and AGRP
neurons. AAA, anterior amygdaloid area; AC, anterior commissure; ACB, nucleus accumbens; Aci, anterior commissure, intrabul-
bar; ARH, arcuate nucleus of the hypothalamus; BST, bed nucleus of the stria terminalis; CA1-3, field CA1-CA3 of the hippo-
campus; CeA, central nucleus of the amygdala; CP, caudate putamen; DMX, dorsal motor nucleus of the vagus; LHA, lateral hy-
pothalamic area; LSd, lateral septal area, dorsal aspect; MeA, medial amygdala; MH, medial habenula; MPO, medial preoptic area;
OT, olfactory tubercle; PAG, periaqueductal gray; PH, posterior hypothalamus; Pir, piriform cortex; PV, periventricular zone; PVH,
paraventricular nucleus of the hypothalamus; PV, paraventricular nucleus of the thalamus; RN, red nucleus; SC, superior collicu-
lus; SN, substantia nigra; SON, supraoptic nucleus; Subv, subiculum, ventral; VMH, ventromedial nucleus of the hypothalamus;
VTA, ventral tegmental area; ZI, zona incerta. The locations of AGRP-immunoreactive fibers and cell bodies are based on data
from the rat; fiber termini remain hypothetical. AGRP fiber distribution in the caudal brainstem was not examined in this study

(reproduced with permission from ref. 432)

de), and B-LPH is processed to -MSH, f-end.51), and
B-end,). a-MSH is an agonist of both the MC3-R
and MC4-R (440,441) and is regulated by both insulin
and leptin.

The CART was originally identified as an mR-
NA that was upregulated in rat striatum and cerebel-
lum by the administration of cocaine and amphetami-
ne (442). In the rat, the CART gene encodes a pepti-
de of either 116 or 129 residues which includes a lea-
der sequence of 27 residues, thus resulting in a matu-
re CART peptide of either 102 or 89 residues. In con-
trast to the rat which contains both the long and short
CART peptides, only the short form exists in humans.
CART mRNA and peptides are found in many hy-
pothalamic nuclei including the ARC where it is
coexpressed in most of the ARC POMC-positive cel-
Is and regulated by leptin.

CART is a potent inhibitor of feeding and can
completely override the feeding response induced by
neuropeptide Y (443). CART-positive perikarya are

also found in the PVH, the SON, the lateral hypotha-
lamic area (LHA), the DMH, the Pv nucleous, and
the ventral premamillary nucleus (PMV), and CART-
positive fibers are distributed throughout the hy-
pothalamus. CART-positive fibers form synaptic con-
tacts with TRH and CRF-stained neurons in the
PVH and these findings provide the anatomical basis
for the involvement of the peptide in the regulation of
both the hypothalamic-pituitary-thyroid and hy-
pothalamic-pituitary-adrenal axes (385, 444-449).

Hormonal regulation of NPY/Agrp and POMC/CART
neurons by insulin and leptin

Insulin

Several lines of evidence indicate that insulin is a
key peripheral hormonal signal that regulates food in-
take and body fat mass (450-452). First, the plasma

t1/2 of insulin is 2-3 minutes, thus rendering the hor-
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Figure 26. POMC posttranslation processing by PC1 (black
arrow) and PC2 (clear arrow) at dibasic cleavage sites (sofid /i-
ne). Tissuespecific expression results in a different range of
peptides produced in the anterior pituitary () compared with
the hypothalamus (H). (reproduced with permission from Coll
AP, Faroogi IS, Challis BG, Yeo GS, O'Rahilly S: J Clin En-
docrinol Metab 2004; 89:2557-2562)

mone capable of responding rapidly to changes in me-
tabolism and providing the brain with minute-to-minu-
te information of an individual’s physiological state. Se-

cond, insulin receptors are widely distributed in the cen-

tral nervous system and are found in particularly high
concentrations in those brain regions involved in the re-
gulation of food intake and body weight (453, 454).
Third, insulin gains entry into the brain via a saturable
transport process that moves the hormone from the pla-
sma into brain interstitial fluid (455). Fourth, the intra-
cerebroventricular (icv) administration of insulin redu-
ces food intake and this effect may be due to its ability
to decrease NPY/Agrp and increase POMC gene ex-
pression in the ARC (456-458). The effects of insulin in
the ARC are mediated by tyrosine phosphorylation of
the insulin receptor, IRS-1 and -2, increased binding of
activated IRS-1 and -2 to the regulatory subunit of PI3-
kinase and activation of protein kinase B/Akt (459). It
is noteworthy that the insulin-induced increase in PI3-
kinase activity preferentially occurs in IRS-2-containing
neurons and that its inhibitory effect on food intake is
blocked by PI3-kinase inhibitors (Figure 27).

Leptin

Leptin, a 167-residue peptide that is the product
of the 04 gene, is derived almost exclusively from adi-

Figure 27. Insulin enhances PIP; immunoreac-
tivity primarily in IRS-2-expressing arcuate
nucleus neurons (4-I: x20 magnification, third
ventricle at lower left of frame; J-L: x100 view
of ARC neurons). Rats were treated with in-
tracerebroventricular vehicle (4, D, G, and ),
intracerebroventricular insulin (10mU, 5 min;
B,E,H, and K), or peripheral insulin (5 units
i.p., 15 min; C,EL and L); the sections of ar-
cuate nucleus immunostained for IRS-2 (4-C)
and PIP; (D-F); and the images merged at low
(G-I) and high power (J-L). IRS-2 immuno-
reactivity was detected specifically in neurons
of the arcuate nucleus with all treatments
(4-C), and with no staining detected elsewhe-
re. Insulin treatment, either intracerebroventri-
cularly (E) or peripherally (), induces increa-
sed PIP; immunoreactivity compared with
vehicle treatment (D). Enhanced PIP; immu-
noreactivity occurs primarily in IRS-2-positive
neurons (G-I). Especially at high magnifica-
tion, PIPy/IRS-2 double-positive neurons are
identified in insulin-treated arcuate nucleus
neurons (K and L), whereas few if any are ob-
served in vehicle-treated rats (/). 3V, third ce-
rebral ventricle (reproduced with permission

from ref. 459)
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pose tissue and is secreted in a pulsatile manner into
the systemic circulation (460, 461). Leptin is an im-
portant peripheral signal that regulates energy balance
since both peripheral and icv administration of the
hormone reduces food intake and body weight (462,
463).

The leptin receptor (ObR) belongs to the cytoki-
ne receptor class I super-family (464) and five alterna-
tively spliced forms with different carboxy-terminal
lengths (a-e) have been identified (465). The expres-
sion of the short leptin receptor isoform, ObRa, is hi-
ghest in the choroid plexus and microvessels where it
may be involved in receptor-mediated transport of the
hormone across the blood-brain barrier and in the clea-
rance of leptin from the cerebrospinal fluid (466-469).
The long form of the leptin receptor, ObRb, is expres-
sed in varying concentrations in several brain nuclei
(470, 471). Within the hypothalamus, dense mRNA
expression is found in the ARC, DMH, ventromedial
hypothalamus (VMH), and ventral premamillary
(PMV) nuclei, moderate expression is found in the Pv
and LHA, and lower levels still are found in the PVH.
Many of these areas are involved in the regulation of
feeding behavior and animals bearing a selective neu-
ron-specific deletion of the ObR develop obesity, indi-
cating that most, if not all, of leptin’s weight-reducing
effects are due to its actions in the brain (472).

Activation of ObRb results in activation of the
associated Jak2 tyrosine kinase and subsequent tyro-
sine phosphorylation of ObRb (473, 474). Two im-
portant tyrosine residues that are phosphorylated
during receptor activation are Tyr**and Tyr'* which
mediate distinct signaling pathways. Tyr*® binds to
the src homology 2 (SH2)-domain protein, SH2-
domain phosphotyrosine phosphatase (SHP-2), and
leads to activation of the extracellular signal-regula-
ted kinase (ERK) and induction of ¢fos expression.
Tyr'"*binds to STAT3 proteins which become tyro-
sine phosphorylated by Jak2, dissociate in the cyto-
plasm to form dimers, and finally translocate to the
nucleus where they regulate gene transcription (Fi-
gure 28, 475). One of the genes induced by STAT3
is that which codes for SOCS3 which functions as a
major feedback inhibitor of ObRb signaling (476).
In addition, the effects of ObRb activation on food
intake, body weight and the Jak-STAT pathway re-

Figure 28. Model of LRb signaling. Murine LRb contains th-
ree intracellular tyrosine residues (shown with surrounding
amino acids) in addition to the conserved Box 1 and Box 2
motifs required for interaction with Jak2. Upon ligand stimu-
lation, the associated Jak2 tyrosine kinase becomes activated,
autophosphorylating and phosphorylating Tyr*® and Tyr'*® of
the LRb. Phosphorylated Tyr"™* recruits STAT3, which is then
tyrosine-phosphorylated by Jak2, whereupon it translocates to
the nucleus to mediate the transcription of socs3 and other ge-
nes. SOCS3 ultimately feeds back upon and inhibits Jak2/LRb
signaling (dotted line). Phosphorylated Tyr* recruits SHP-2,
which is then tyrosine-phosphorylated by Jak2. Phosphoryla-
ted SHP-2 (identical to pp75) binds GRB-2 and mediates the
majority of ERK activation during LRb signaling. An additio-
nal minor amount of GRB-2 binding and ERK activation is
mediated directly by Jak2 (¢hin line). The activation of ERK re-
sults in the transcription and accumulation of ¢-fos message
(reproduced with permission from ref. 475)

quire an intact PI3-kinase-phosphodiesterase 3B-
cyclic AMP signaling pathway, since these effects are
blocked by a phosphodiesterase 3 inhibitor (477,
478).

The weight-reducing effects of leptin are media-
ted by stimulation of the anorexigenic POMC neu-
rons and inhibition of the orexigenic NPY/Agrp neu-
rons in the ARC (479-485). Leptin increases the fre-
quency of action potentials in POMC neurons by cau-
sing depolarization through a nonspecific cation
channel and by reducing the inhibition exerted by lo-
cal NPY/y-aminobutyric acid neurons (484). As jud-
ged by its ability to activate PI3K, leptin increases the
membrane accumulation of PI3K in POMC neurons
but decreases PI3K accumulation in Agrp neurons
(Figure 29, 485). Moreover, this latter effect of leptin

on Agrp neurons is indirect, since it is blocked by
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Figure 29. Unifying mechanism for leptin modulation of key
arcuate nucleus neurons in which PI3K activity is a mediator
and/or marker of neuronal activation and neuropeptide release
in both Agrp (pink) and POMC (green) neurons. The effects
of insulin on PI3K activity are direct in both neuronal subty-
pes, but the effects of leptin on PI3K activity in Agrp neurons
require synaptic transmission from POMC or other (gray)
inhibitory synaptic neurons. IR, insulin receptor; LepR, leptin
receptor (reproduced with permission from ref. 485)

inhibitors of synaptic transmission. Although insulin,
like leptin, increases PI3K accumulation in POMC
neurons, it also increases PI3K accumulation in Agrp
neurons and neither of these actions are affected by
inhibitors of synaptic transmission.

These results provide a new model to explain how
leptin may exert different effects on these two cell ty-
pes and suggest that the parallel effects of leptin and
insulin on energy balance could be integrated at the

level of the POMC neuron.

DMH

Connections

The DMH has been associated in some way with
almost every goal-directed behavior and visceral re-
sponse associated with the hypothalamus. The DMH
lies adjacent to the third ventricle caudal to the PVH,
dorsal to the VMH, and ventral to the zona incerta.
The majority of the inputs to the DMH arise in the
hypothalamus, although there are a few significant in-
puts from the telencephalon and brainstem (Figure
30, 486). With the exceptions of the magnocellular
preoptic nucleus, the magnocellular parts of the PVH,
the SON, and the medial and lateral mamillary nuclei,
each major hypothalamic nucleus and area provides
inputs to the DMH. The major projections from the
DMH are also intrahypothalamic and follow three di-
stinct ascending pathways -a) paraventricular, b) ven-
tral, and c) lateral. Within the hypothalamus, the mo-
st densely innervated areas are the dorsal and ventral
medial parvicellular parts of the PVH, other dorsal re-
gions of the periventricular zone, the preoptic SCN,
and the parastriatal nucleus (487).

Neuropeptides synthesized in the DMH

The DMH also contains neuropeptide perikarya
and fibers but for the purposes of this discussion, we
will only focus on CRF and NPY since their genes ha-
ve been shown to be regulated by exercise.

Figure 30. General organization of

projections to the DMH. Inputs prima-
rily utilize three descending pathways:
periventricular and medial (1) and lateral
(2), and two major ascending pathways:
midbrain periventricular (3) and brain-

stem lateral (4). Pathways that were ob-
served in our control injections, or relia-
bly reported in the literature, are repre-
sented by a solid line. Regions for whi-
ch the pathway is uncertain are repre-
sented by a dashed line (reproduced
with permission from ref. 486)
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CRF

Several studies have shown that food intake and
body weight are significantly decreased when rats are
allowed free access to a running wheel (488,489). In
addition, 42 h of running wheel access augments CRF
gene expression in cell bodies located in the dorsal
aspect of the DMH, but has no effect on CRF gene
expression in the PVH (Figure 31, 490). Since the icv
administration of a CRF antagonist specifically pre-
vents the effects of exercise on meal size (491), the fin-
dings suggest that exercise induces endogenous CRF
release leading to a reduction in meal size and food in-
take. Although the PVH and central nucleus of the
amygdala (CeA) are important sites that mediate so-
me of the central actions of CRF, lesions of these nu-
clei have no effect on exercise-induced anorexia, indi-
cating that these brain areas do not play a role in me-
diating this response (492, 493). To date, the exact
mechanisms by which exercise initially activates CRF
gene expression in the DMH remain unknown.

NPY

Physical exercise also increases NPY mRNA ex-
pression in the DMH and ARC (400, 494), but in

contrast to the time course with which running wheel

access increases DMH CRF gene expression, DMH
NPY gene expression only increases after 7-days of
exercise. Although DMH CRF gene expression is still
elevated after 7-days of exercise, the CRF-mediated,
exercise-induced anorexia subsides and the food in-
take in exercised animals closely approximates that
seen in sedentary animals. It therefore appears that the
increase in NPY gene expression seems to override the
effect of CRF on food intake at this time.

Postulated mediation by Musculin of exercise-induced
GH, ACTH and PRL secretion

A number of studies in man have demonstrated
that physical exercise has no discernible acute or chro-
nic effects on serum leptin concentrations (495-499),
suggesting that it is unlikely that leptin plays a signifi-
cant role in mediating the effects of exercise on anterior
pituitary secretion. Furthermore, although insulin may
stimulate anterior pituitary hormone secretion indirec-
tly by virtue of the hypoglycemia that results from ex-
cessive insulin production or administration, the occur-
rence of hypoglycemia implies an underlying pathophy-
siological state, and is not a usual concomitant of phy-
sical exercise. Moreover plasma insulin levels decline,
rather than increase, during exercise, and taken together
these findings also tend to exclude a significant role for

Figure 31. Effect of exercise on CRF gene expression in the DMH. In situ hybridization of CRF with *S-labeled-CREF antisense
riboprobe. CRF gene expression was detected very lightly in sedentary rats (4), CRF was highly expressed in the DMH in volun-
tary exercising rats (B), and the induction of DMH CRF expression was mainly localized to the dorsal region of the DMH (B and

C) (reproduced with permission from ref. 490)



182

D. Engler

insulin as a mediator of exercise-induced pituitary hor-
mone secretion. Considerations such as these set the
stage for the possible involvement of additional fac-
tor(s) as mediators of exercise-induced pituitary hor-
mone secretion. We therefore postulate that:

* Musculin concentrations in the systemic circulation
increase during physical exercise in increments that
correlate directly with the exercise intensity.

* Musculin acts directly on the brain to mediate the
anterior pituitary hormone and appetite responses
to exercise.

GH

From the aforementioned review, we postulate
that:

* Musculin acts directly on ARC GRF neurons to in-
crease the synthesis and release of GRI into the hy-
pophysial-portal circulation.

Since physical exercise also increases Prepro-
GAL gene expression in the Locus Ceruleus (A6 area,
500), we postulate that:

* Musculin binds directly to GAL neurons in the A6

area and stimulates GAL synthesis and secretion.

Since the A6 area does not lie outside the blood-
brain barrier (501), we postulate that, like insulin and
leptin (455, 466-469, 502-505),

* Musculin may gain access to the brain by a receptor-

mediated active transport mechanism.

Studies in the rat and in man suggest that GAL
stimulates GH secretion by both increasing GRF relea-
se and by inhibiting SRIF secretion (506-513). Since
axons derived from A6 GAL-immunoreactive neurons
project to the periventricular part of the PVH (377) and
synapse directly with those SRIF neurons that project
to the median eminence (514), we propose that:

* Musculin also increases GH secretion by enbancing
the inhibitory galaninergic regulation of hypotha-
lamic SRIF release.

These postulates are schematically illustrated in

Figure 32.

ACTH

As previously stated, it is currently accepted that
the hypothalamus only provides a unidirectional, sti-

Figure 32. A hypothetical scheme depicting the mechanisms
by which Musculin may mediate the Growth Hormone re-
sponse to exercise. It is suggested that Musculin may bind di-
rectly to ARC GRF neurons and stimulate GRF synthesis and
its release into the hypophysial-portal circulation. In addition,
it is hypothesized that Musculin binds to galanin neurons in the
locus ceruleus and increases galanin gene expression at this si-
te. These galanin neurons give rise to axons which innervate
SRIF neurons in the periventricular area. The galaninergic re-
gulation of SRIF is inhibitory and the resultant reduction in
SRIF secretion into hypophysial-portal blood would also be
expected to facilitate Growth Hormone secretion. ARC, ar-
cuate nucleus; GAL, galanin; GRF, Growth Hormone-Relea-
sing Factor; LC, locus ceruleus; PV, periventricular area; PVH,
paraventricular hypothalamic nucleus; SRIF, somatostatin

mulatory regulation of ACTH secretion and that this
is predominantly mediated by the neuropeptides CRF
and AVP. In turn, the hypothalamic CRF and AVP
neurons that project to the median eminence receive
noradrenergic and adrenergic inputs derived from the
brainstem and in previous studies, we have shown that
the noradrenergic input stimulates the release of both
CRF and AVP into the hypophysial-portal circulation
of the conscious sheep (515). Moreover, physical exer-
cise has also been shown to increase the concentra-
tions of NE and its metabolite 3.4-dihydroxyphenyl-
glycol (DHPG) in the pons-medulla (516, 517). As
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previously described, the noradrenergic innervation of
the PVH is derived from the A1, A2, and A6 areas,
but since the A1 NE neurons mainly project to the
magnocellular subdivisions of the PVH which are not
concerned with HPA axis regulation and since NE
turnover in the A6 area is not affected by exercise
(500), we postulate that:

* Musculin binds to NE neurons in the A2 area whe-
re it stimulates NE synthesis, thereby increasing the
stimulatory noradrenergic regulation of those hy-
pothalamic CRE and AVP neurons concerned with
regulation of the HPA axis.

The paraventricular hypothalamic CRF and AVP
neurons concerned with HPA axis regulation also re-
ceive peptidergic inputs and a prominent contribution
is made by NPY axons that are mainly derived from
ARC NPY neurons (370). Since physical exercise in-
creases ARC NPY gene expression and since NPY ac-
tivates the HPA axis in a number of species (515, 518,
519) by increasing CRF and AVP secretion into the
hypophysial-portal circulation (Figure 33, 515), we
postulate that:

* Musculin binds to ARC NPY neurons where it in-
creases NPY synthesis, thereby increasing the stimu-
latory NPYergic input to those hypothalamic CRI
and AVP neurons that regulate the HPA axis.

These postulates are illustrated schematically in
Figure 34.

PRL

As previously mentioned, prolactin secretion by
the anterior pituitary is tonically inhibited by DA and
stimulated by a number of hypothalamic releasing fac-
tors such as VIP, TRH, and OT. A number of studies
have shown that the icv administration of GAL in-
creases the release of VIP from periventricular struc-
tures into the cerebrospinal fluid (520, 521). Since the
icv administration of GAL also increases prolactin se-
cretion which is attenuated by the concomitant icv ad-
ministration of a VIP antiserum (520-523), the fin-
dings support the hypothesis that GAL stimulates
prolactin secretion by increasing the hypothalamic re-
lease of VIP. The VIP neurons that project to the me-
dian eminence are concentrated in the medial parvo-

cellular subdivision of the PVH (345) and this area,
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Figure 33. Activation of the hypothalamic-pituitary-adrenal
axis by neuropeptide Y. The effect of neuropeptide Y (50 ug
icv) on plasma CRF, AVP, ACTH, and cortisol levels in three
ewes (reproduced with permission from ref. 515)

together with the periventricular and anterior parvo-
cellular subdivisions of the PVH, receive a prominent
input of galaninergic fibers that are derived from the
A6 area (377).

Since exercise increases GAL biosynthesis in the
A6 area, we postulate that:

* Musculin may bind to the GAL neurons in the A6

area and stimulate GAL synthesis and secretion.
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Figure 34. A hypothetical model of the mechanisms by which
Musculin may mediate the Adrenocorticotropin response to
exercise. It is suggested that Musculin binds to ARC neuro-
peptide Y neurons and increases NPY synthesis and secretion.
ARC neuropeptide Y neurons project heavily to the PVH
where they form synaptic contacts with CRF and AVP neu-
rons. Neuropeptide Y stimulates CRF and AVP release into
the hypophysial-portal circulation and thus increases adreno-
corticotropin secretion. In addition, it is postulated that Mu-
sculin binds to noradrenergic (NE) neurons in the A2 area and
increases NE synthesis. The A2 noradrenergic neurons give ri-
se to axons which innervate the PVH and form synapses with
CRF and AVP neurons. NE also stimulates CRF and AVP re-
lease into the portal circulation and thus increases adrenocor-
ticotropin secretion. ACTH, adrenocorticotropin; ARC, ar-
cuate nucleus; AVP, arginine vasopressin; A2, nucleus of the
tractus solitarius; NE, norepinephrine (noradrenaline); NPY,
neuropeptide Y; PVH, paraventricular hypothalamic nucleus

* The increased galaninergic drive may stimulate the
hypothalamic release of VIP from the PVH and in-
crease the secretion of prolactin by the lactotropes of
the anterior pituitary.

As previously stated, prolactin secretion is toni-
cally inhibited by tuberoinfundibular dopaminergic
(TIDA) neuron secretion but, to our knowledge, in
vivo microdialysis studies of the effects of physical
exercise on DA secretion from ARC TIDA neurons
have yet to be performed. However, it has been shown

that physical exercise acutely increases the release of
DA, NE, and GLU from the rat striatum (524, 525),
and although the mechanisms underlying these effects
remain unclear, it is conceivable that exercise could si-
milarly affect TIDA neuronal activity. Since activation
renders TIDA neurons susceptible to the inhibitory
effects of GAL (526), we postulate that:
* Musculin may bind directly to and activate ARC
TIDA neurons.
* Musculin-induced activation may render ARC TI-
DA neurons susceptible to the inhibitory effects of
GAL, thereby reducing the dopaminergic drive fo
the lactotropes and thus increasing prolactin secre-
tion.
These postulates are illustrated schematically in

Figure 35.

Postulated mediation by Musculin of exercise-induced
anorexia

To date, the earliest described change in hy-
pothalamic neuropeptide gene expression in response
to short-term (42 h) exercise is a singular 1.5-2.0-fold
increase in CRF mRNA in the dorsal DMH (490),
there being no discernible effects on ARC neuropep-
tide gene expression. However, long-term exercise
causes a 5-fold induction of DMH CRF mRNA, it
subsequently induces NPY gene expression in the
DMH, and increases ARC NPY and POMC mR-
NAs (490, 527).

Several lines of evidence support the suggestion
that the early induction of DMH CRF mRNA in re-
sponse to short-term exercise cannot be easily ascri-
bed to the actions of leptin or insulin. Firstly, althou-
gh the DMH does contain ObRs and responds to in-
travenously injected leptin with an induction of neu-
ronal Fos immunoreactivity (ir), the Fos-ir is charac-
teristically observed in the caudal portion of the ven-
tral subdivision, rather than in the dorsal part of the
nucleus where the CRF neurons are located (528).
Secondly, most studies in man suggest that short-
term physical exercise appears to have no discernible
effect on serum leptin concentrations, although this
statement may not be applicable to rodents. Thirdly,
although long-term exercise has been shown to cause
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Figure 35. A hypothetical model of the mechanisms by which
Musculin may mediate the Prolactin response to exercise. It is
suggested that Musculin binds to galanin neurons in the locus
ceruleus and increases galanin gene expression. The galanin
neurons give rise to axons which innervate the paraventricular
hypothalamus where they form synaptic contacts with vasoac-
tive interstinal polypeptide neurons. The galaninergic regula-
tion of vasoactive intestinal peptide is stimulatory in nature
and since vasoactive intestinal polypeptide is a prolactin-relea-
sing factor, this mechanism would be expected to increase pro-
lactin secretion. In addition, it is suggested that Musculin binds
to and activates ARC tuberoinfundibular dopamine (TIDA)
neurons. Activation of TIDA neurons renders them suscepti-
ble to the inhibitory effects of galanin, and since dopamine to-
nically inhibits the release of prolactin, a posulated net reduc-
tion in dopaminergic tone would also be expected to increase
prolactin secretion. ARC, arcuate nucleus; DA, dopamine;
GAL, galanin; LC, locus ceruleus; PVH, paraventricular hy-

pothalamic nucleus; VIP, vasoactive intestinal polypeptide

a ~20% reduction in serum insulin concentrations,
the magnitude of this effect has not been found to be
statistically significant (494). Moreover, the profound
insulinopenia that characterizes the diabetes resulting
from the administration of the islet B-cell toxin,
streptozotocin, causes changes in ARC gene expres-
sion, but does not seem to affect neuropeptide ex-
pression in the DMH (529). From these considera-

tions, we suggest that:

o The exercise-induced changes in DMH CRIE gene
expression are unlikely to be mediated by leptin or
insulin.

* Musculin may constitute a separate non-leptin,
non-insulin hormonal pathway that mediates the
exercise-induced changes in DMH neuropeptide
gene expression.

* Musculin binding and activation of DMH CRF
neurons may constitute an early event in the me-
diation of exercise-induced anorexia.

As previously noted, long-term exercise causes a
5.0-fold induction of DMH CRF mRNA and also in-
creases ARC POMC gene expression. A number of
immunohistochemical studies have shown the presen-
ce of abundant a-MSH fibers and terminals within
the DMH (530, 531). Since retrograde studies have
shown that the majority of inputs to the DMH arise
in the hypothalamus (486), it seems reasonable to con-
clude that ARC POMC neurons are the major source
of a-MSH fiber projections to the DMH. In recent
studies, Lechan and coworkers have sought to deter-
mine the DMH neuronal subpopulations that project
to the PVH (531). When cholera toxin f-subunit was
injected into the PVH, ~65% of all the DMH neurons
that were retrogradely labeled were found in the me-
dial portion of the ventral subdivision (DMHv) and
~26% were diffusely distributed in the dorsal subdivi-
sion (DMHJ). Moreover, ~39% of the DMHd-labe-
led cells were contacted by a-IMSH-stained axon ter-
minals. Since CRF-stained neurons are located in the
DMH(d and project to the PVH (490, 532), it is pos-
sible that some of these retrogradely labeled cells we-
re CRF neurons. Moreover, recent studies have de-
monstrated a functional link between the central me-
lanocortin system and CRF-producing neurons, albeit
in the PVH (533, 534). The MC4-R is expressed in
~10-15% of the CRF neurons in the PVH and the icv
administration of a-MSH causes phosphorylation of
the cAMP response element binding protein (CREB)
in CRF (and TRH) neurons in several subdivisions of
the PVH (533). Furthermore, the administration of
the melanocortin agonist, MTII, rapidly increases
CRF hnRNA, increases plasma corticosterone levels,
and causes anorexia (534). The DMH is also known
to express the MC4-R mRNA (535, 536) and althou-
gh, to our knowledge, anatomical and functional stu-
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dies of a possible melanocortin-CRF interaction have
yet to be performed in the DMH, we postulate that:

* Musculin may bind to ARC POMC neurons and
increase POMC gene expression.

* The resultant increase in ARC POMC mRNA ex-
pression may secondarily potentiate CRIF gene ex-
pression in the DMH by increasing an a-MSH-
mediated stimulation of the DMH CREF gene.

As previously stated, long-term exercise induces
DMH NPY gene expression in the DMH (490, 527),
and it is noteworthy that this phenomenon has also
been demonstrated in the following pathophysiologi-
cal and physiological states - firstly, it has been obser-
ved in several rodent models of obesity including
obese MC4-R” and obese /4 mice (537-539). Since
these animals represent two examples of the melano-
cortinergic obesity syndrome and are respectively
characterized by diminished or absent melanocortin
signaling, it has been proposed that des-acetyl-a-
MSH released at MC4-R-containing synapses in the
DMH normally inhibits NPY gene expression in this
nucleus (537). However, the absence of DMH NPY
gene expression in nonobese /4 animals indicates that
abrogation of melanocortinergic signaling alone is
not sufficient to cause the phenomenon. Secondly,
DMH NPY gene expression has been found after
long-term food restriction (494), after the admini-
stration of naloxone, which also causes mild anorexia
and a reduction in food intake (540), and in diet-in-

duced obesity (541).

Thirdly, DMH NPY gene induction occurs du-
ring lactation in the rat, in which 3 h of suckling is
sufficient to activate DMH NPY gene expression, but
24 h of suckling is required to increase NPY mRNA
in the caudal portion of the ARC (542). The studies
by Smith and colleagues (542-545) also suggest that
the DMH NPY gene is inhibited by melanocortin si-
gnaling since lactation also reduces ARC POMC
mRNA (545), and bilateral injections of an MC4-
R/3-selective agonist (melanotan II) into the DMH
of the lactating rat greatly attenuates the induction of
DMH NPY gene expression and the suckling-indu-
ced hyperphagia (536). A schematic diagram summa-
rizing this postulated sequence of events is shown in
Figure 36.

As noted, long-term physical exercise increases
both ARC NPY and POMC mRNAs (490, 527).
Moreover, this pattern of ARC neuropeptide gene ex-
pression seems unique, since it differs from that cau-
sed by leptin and insulin, which both increase ARC
POMC mRNA and decrease ARC NPY mRNA
(451-453, 457,458, 479, 484, 546), and suckling, whi-
ch increases ARC NPY mRNA and decreases ARC
POMC mRNA. Therefore, although a role for mela-
nocortin signaling in the induction of DMH NPY
mRNA seems established in obese rodent models of
melanocortinergic obesity and lactation as described
above, the rise in ARC POMC mRNA during long-
term exercise renders it difficult to invoke withdrawal
of melanocortinergic signaling in the DMH as a pri-

N N .. .
Suckling Stimulus

Figure 36. Schematic diagram summarizes the propo-
sed hypothesis for MC4R-mediated activation of
DMH NPY neurons and the hyperphagic response
during lactation. During lactation, ARH AGRP/NPY
input to the DMH is elevated whereas ARH POMC
tone into the DMH is reduced. Most of these inputs
likely terminate on inhibitory interneurons expressing
MCA4R (i.e. GABAergic) in the DMH. The inset de-
picts MCA4R signaling. The increased AGRP input in
combination with reduced POMC input from the
ARH causes a reduction in MC4R signaling, leading
to a decrease in GABAergic inhibition on the DMH
NPY neurons, resulting in activation of NPY mRNA
expression during lactation. The activated NPY neu-
rons in the DMH may be involved in a number of mo-
dulations during lactation, including hyperphagia and
energy expenditure, probably via projection to the
PVH (reproduced with permission from ref. 536)
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mary mechanism responsible for the induction of
DMH NPY gene expression by exercise, and points
towards mechanism(s) other than those mediated by
the MC4-R.

It is possible that the induction of DMH NPY
mRNA by long-term physical exercise is the result of
metabolic or hormonal effects of the exercise and this
suggestion is supported by studies which have exami-
ned the effects of acute food deprivation or chronic
food restriction in the rat (547). These studies have
demonstrated that both experimental methods of ca-
loric deprivation elevate ARC NPY and decrease
ARC POMC gene expression, but only chronic food
restriction induces NPY gene expression in the
DMH. Although acute food deprivation and chronic
food restriction both cause weight loss and identical
reductions in serum leptin, plasma glucose and insulin
levels are only reduced by acute food deprivation. The-
se data indicate that ARC and DMH NPY mRNAs
are differentially regulated, and unlike ARC NPY
mRNA which is responsive to short-term alterations
in food intake, DMH NPY gene expression may only
respond to long-term alterations in energy intake or
expenditure. Moreover, the findings also suggest that
DMH NPY gene expression is not regulated by lep-
tin, a conclusion which is further strengthened by the
lack of colocalization of the ObRs in DMH NPY
neurons (547). Finally, studies in the lactating rat ha-
ve shown that DMH NPY neurons may also be hor-
monally regulated by prolactin, since the suckling-me-
diated induction of DMH NPY gene expression is si-
gnificantly attenuated when the associated hyperpro-
lactinemia is prevented by the dopaminergic agonist,
bromocriptine (548).

It is possible that several etiological factors could
underly the exercise-induced increase in ARC NPY
and POMC mRNAs. Firstly, this pattern of ARC ge-
ne expression could be entirely caused by the direct ef-
tects of Musculin. Musculin binding to ARC POMC
neurons could increase PI3K, as has been demonstra-
ted for leptin and insulin, and this would result in a
model whereby the effects of leptin, insulin, and Mu-
sculin are integrated at the level of these anorexigenic
neurons (Figure 37). If Musculin also activated ARC
NPY/Agrp neurons by synaptic interaction with
POMC neurons, as has been demonstrated for leptin

= Insulin
Musculin

Leptin

Figure 37. A schematic representation of the modulation of ar-
cuate nucleus neurons by leptin and insulin, and postulated mo-
dulation by Musculin. This figure is a modification of Figure 29
and PI3K activity is depicted as a mediator and/or marker of
neuronal activation and neuropeptide release in both Agrp (pink)
and POMC (green) neurons. For the sake of clarity, the effects of
insulin and leptin on PI3K activity have been omitted, but are
identical to that shown in Figure 29. The figure proposes that the
effects of Musculin on Agrp neurons are synaptically mediated
from POMC or other neurons. However, in contrast to leptin
which decreases PI3K activity in Agrp neurons, it is suggested
that Musculin may increase PI3K in these neurons. IR, insulin re-
ceptor; LepR, leptin receptor; MusR, Musculin receptor

(485), then one would predict that PI3K activity
would increase in response to Musculin, thereby oppo-
sing the actions of leptin. However, one could also en-
visage a model whereby Musculin bound both POMC
and ARC neurons separately and increased PI3K ac-
tivity in both neuronal subtypes (Figure 38).

Finally, it also remains possible that the exercise-
induced increases in ARC NPY and POMC mRNAs
could represent a combination of the direct effects of
Musculin binding to POMC neurons and the indirect
effects of the metabolic and hormonal responses to
exercise on NPY/Agrp neurons. For example, as pre-
viously detailed, exercise in man and rodents is asso-
ciated with a reduction in serum insulin concentra-
tions. Moreover, although studies in man have gene-
rally suggested that acute exercise has little effect on
serum leptin levels, exhaustive exercise in man and
long-term exercise in rodents does reduce leptin con-
centrations (549-551). As noted, ARC NPY/Agrp
neurons respond to leptin and insulin withdrawal with
an upregulation of NPY mRNA expression and these
mechanisms could theoretically account for the in-
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Insulin

“Musculin +

Figure 38. An alternative schematic representation of the mo-
dulation of arcuate nucleus neurons by leptin and insulin, and
postulated modulation by Musculin. This figure is also a modi-
fication of Figure 29 and PI3K activity is depicted as a media-
tor and/or marker of neuronal activation and neuropeptide re-
lease in both Agrp (pink) and POMC (green) neurons. The ef-
fects of insulin on PI3K activity are direct in both neuronal
subtypes, but the effects of leptin on PI3K activity in Agrp
neurons require synaptic transmission from POMC or other
(gray) inhibitory synaptic neurons. This figure proposes that
the effects of Musculin on PI3K are also direct and that PI3K
is increased in both neuronal subtypes. IR, insulin receptor,
LepR, leptin receptor; MusR, Musculin receptor

creased ARC NPY mRNA observed in long-term

€exercise.

Future directions

Although much of the content of this manuscript
is hypothetical, we suggest that a search for a protein
with the characteristics described for Musculin may be
worthwhile, since analogues of such a substance may be
of therapeutic benefit in the management of the cur-

rent global diabetes and obesity epidemic (552-560).
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