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LECTURE

Finite machines, mental procedures, and modern physics

Rossella Lupacchini
Department of Philosophy, University of Bologna, Bologna, Italy

Abstract. A Turing machine provides a mathematical definition of the natural process of calculating. It
rests on trust that a procedure of reason can be reproduced mechanically. Turing’s analysis of the concept of
mechanical procedure in terms of a finite machine convinced Gédel of the validity of the Church thesis.
And yet, Gédel’s later concern was that, insofar as Turing’s work shows that “mental procedure cannot go
beyond mechanical procedures”, it would imply the same kind of limitation on human mind. He therefore
deems Turing’s argument to be inconclusive. The question then arises as to which extent a computing ma-
chine operating by finite means could provide an adequate model of human intelligence. It is argued that a
rigorous answer to this question can be given by developing Turing’s considerations on the nature of men-
tal processes. For Turing such processes are the consequence of physical processes and he seems to be led to
the conclusion that quantum mechanics could help to find a more comprehensive explanation of them.
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Introduction

The need for a precise and adequate definition of
the informal notion of finite procedure emerges in the
context of the decision problem and of the generaliza-
tion of Godel’s incompleteness theorems. Godel’s
opening remarks, in his paper of 1931 (1), summarize
the result of the work, i.e., the proof of the incomple-
teness of Principia Mathematica and related systems, as
tollows:

“The development of mathematics toward grea-
ter precision has led, as is well known, to the formali-
zation of large tracts of it, so that one can prove any
theorem using nothing but a few mechanical rules.
The most comprehensive formal systems that have
been set up hitherto are the system of Principia mathe-
matica (PM) on the one hand and the Zermelo-
Fraenkel axiom system of set theory (...) on the other.
These two systems are so comprehensive that in them
all methods of proof used in mathematics are formali-
zed, that is, reduced to a few axioms and rules of infe-
rence. One might therefore conjecture that these

axioms and rules of inference are sufficient to decide
any mathematical question that can at all be formally
expressed in these systems. It will be shown below that
this is not the case, that on the contrary there are in
the two systems mentioned relatively simple problems
in the theory of integers that cannot be decided on the
basis of the axioms.”

Godel’'s emphasis is on rules, and the adjective
mechanical stands out. The “mechanical rules”, as ex-
plained in “refer only to the outward structure of the
formulas, not to their meaning, so that they can be ap-
plied by someone who knew nothing about mathema-
tics, or by a machine.” (2).

To disprove the conjecture about the decidability
of “any mathematical question”, Godel used an effec-
tive technique of “arithmetization” that serves the pur-
pose of constructing, within the formal system, a pro-
position concerning positive integers which is true,
but cannot be proved within the system. The formal
system is not capable of producing all true proposi-
tions and therefore is incomplete. Moreover, if the ne-
gation of the unprovable proposition is added to the
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system, a consistent system containing false state-
ments can be formed. Gédel’s proof entails the impos-
sibility of asserting consistency for a system that con-
tains a minimal amount of arithmetic without using
deductive instruments that cannot be formalized in
the system itself: G6del’s second incompleteness theo-
rem.

Although Gédel’s incompleteness theorems
meant the failure of Hilbert’s program, namely to give
consistency proofs for mathematics by finitist means
(in metamathematics), Gédel’s method of proof can
be taken as evidence of the strength of the mathema-
tical instruments provided by Hilbert’s proof theory.
The general approach was explained in Hilbert and
Ackermann (3):

“Mathematical logic achives more than a sharpe-
ning of language by a symbolic representation of infe-
rences. Once the logical formalism is fixed, we can ex-
pect that a systematic, so-to-speak calculatory treat-
ment of logical formulas is possible that corresponds
roughly to the theory of equations in algebra”.

According to Herbrand, metamathematics al-
lowed a mathematical treatment of the most general
problem of mathematics, the so called decision pro-
blem [Entscheidungsproblem], “which consists of
seeking a method allowing us to recognize with cer-
tainty (at the end of a number of operations which can
be determined beforehand) whether or not a given
proposition is an identity, and if it is to find a proof of
the proposition” (4). Herbrand considered the solution
of the Entscheidungsproblem as another route to esta-
blishing consistency. Hilbert and his school viewed
the decision problem as a fundamental problem of
mathematical logic. Finding a positive solution to the
Entscheidungsproblem would have meant finding a so-
lution to any mathematical problem using a finite
number of operations: it would have been sufficient to
formalize, within first-order logic, the branch of
mathematics relevant to that question.

But a positive solution to the Entscheidungspro-
blem could also hide the threat that mathematics was
trivialized through mechanism. In von Neumann’s
words (5):

“[...] the undecidability is even the conditio sine
qua non for the contemporary practice of mathema-
tics, using as it does heuristic methods, to make any

sense. The very day on which the undecidability does
not obtain any more, mathematics as we now under-
stand it would cease to exist; it would be replaced by
an absolutely mechanical prescription, by means of
which anyone could decide the provability or unpro-
vability of any given sentence”.

Thus a negative solution to the Entscheidungspro-
blem required to specify which “absolutely mechanical
prescription”, or finite procedure, would do the job. In
a note of 1964, Godel gives Turing credit for this re-
sult (6):

“Turing’s work gives an analysis of the concept of
‘mechanical procedure’ (alias ‘algorithm’ or ‘computa-
tion procedure’ or ‘finite combinatorial procedure’).
This concept is shown to be equivalent with that of a
Turing machine

Turing machines

To say that what is “effectively calculable” can be
calculated by a machine is to phrase the so-called
Church thesis in Turing’s language, and the machine in
question is a Turing machine. The Church thesis is a
quasi-empirical claim as it provides a precise mathe-
matical definition — such as a Turing machine, Gdel’s
general recursiveness, or Church’s A-definability — of
what can “naturally” be regarded as eftectively calcula-
ble. It delimits the scope of the concept of calculabi-
lity. Although those mathematical concepts were pro-
ved all logically equivalent, Turing’s would reveal a
particular perspicuity and a great fruitfulness. Godel,
who hailed Church’s definition as “thoroughly unsati-
sfactory” and suggested “to state a set of axioms whi-
ch would embody the generally accepted properties of
this notion [effective calculability], and to do so-
mething on that basis”, would claim:

“The most satisfactory way ... [of arriving at su-
ch a precise definition of the concept of finite proce-
dure] is that of reducing the concept of finite proce-
dure to that of a machine with a finite number of parts,
as has been done by the British mathematician Tu-
ring” (7)

For Turing effective calculability requires an
agent, i.e., a computer. Considering a Auman agent,
the goal is then to establish which simple mechanical
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operations on symbolic configurations can be carried
out in human computing. It follows that boundedness
conditions, grounded in limitations of the relevant ca-
pacities of a human computer, are to be imposed on
computability. If it is assumed that the computation is
performed by printing symbols on a potentially infini-
te tape divided into squares, then there is a lower
bound on the size of symbols, to distinguish one sym-
bol from the other, and an upper bound on the num-
ber of symbols, to ensure that all symbols (which take
part in a computational step) can be observed at a sin-
gle glance. The states relevant to the computation mu-
st be “immediately recognisable”. If the machine is ca-
pable of “observing” only one square at the time, then
its “steps” must be of two kinds: a change of the ob-
served square to the square one to the left or to the ri-
ght, a change in the symbol which appears on the ob-
served square.

To know the state of a computation means to
know “the sequence of symbols on the tape, which of
these are observed by the computer (possibly with a
special order), and the state of mind of the computer”
(8). This “instantaneous configuration” allows deter-
mining which operation is to be executed and what is
going to be the next configuration. In this way the ca-
pabilities of a human agent of carrying out a calculus
can be converted in a finite set of instructions for a lo-
gical machine, i.e., a Turing machine. Any possible in-
ventiveness should participate in computing is bridled
by “operations so elementary that it is not easy to ima-
gine them further divided.” In so far as human com-
puting can be simulated by a finite number of such lo-
cal operations, a Turing machine is to be understood
as computationally equivalent to a human agent. Within
these constraints, a Turing machine calculates like a hu-
man being.

As Turing’s method is intended for an application
to the Entscheidungsproblem, Turing is led to conceive
a “universal machine” capable of imitating any Turing
machine whatever, and therefore of executing all pos-
sible computations. The crucial idea was that when a
finite set of instructions which describes any special
Turing machine is fed to the universal machine, this
simulates the special one. Hence it can execute any
computation that any special Turing machine can.
Once the Turing machine model fulfils von Neu-

mann’s demand for absolutely mechanical prescrip-
tion, the Entscheidungsproblem is proved by the impos-
sibility of halting a universal Turing machine; moreo-
ver, as it provides a “precise and unquestionable ade-
quate definition” of the general concept of formal sy-
stem, Godel’s theorem becomes a result concerning
the very concept of formal system. The undecidable
proposition can now be produced by a method that
can be applied with cogency to any formal system. It
is worth stressing how Turing’s analysis echoes Hil-
bert’s words . (9):

“The fundamental idea of my proof theory is no-
ne other than to describe the activity of our under-
standing, to make a protocol of the rules according to
which our thinking actually proceeds. Thinking, it so
happens, parallels speaking and writing: we form sta-
tements and place them one behind another. If any to-
tality of observations and phenomena deserves to be
made the object of a serious and thorough investiga-
tion, it is this one”.

The question then arises as to whether the very
activity of our understanding could be comprised in a
few mechanical rules.

Beyond mechanical procedures

As mentioned above, Turing’s reduction of the
concept of finite procedure to that of a finite machine
convinced Godel of the validity of the Church thesis.
And yet, Godel’s later concern was that, insofar as Tu-
ring’s work shows that “mental procedure cannot go
beyond mechanical procedures”, it would imply the
same kind of limitation on human mind. He therefo-
re deems Turing’s argument to be inconclusive (10):

“What Turing disregards completely is the fact
that mind, in its use, is not static, but constantly develo-
ping, i.e. that we understand abstract terms more and
more precisely as we go on using them, and that mo-
re and more abstract terms enter the sphere of our un-
derstanding. (...) although at each stage the number
and precision of the abstract terms at our disposal may
be finite, both (and, therefore, also Turing’s number of
distinguishable states of mind) may converge towards in-
finity in the course of the application of the procedu-

»
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Is Godel’s critics justified?

For Gédel, our understanding is to involve some
sort of purely mental activity beyond the finite me-
mory of the brain. All possible processes of human
mind cannot be simulated by a finite state machine. In
his Gibbs Lecture (1951), Gédel speculates on some
philosophical implications of his incompleteness
theorems and focuses on the phenomenon of the
inexhaustibility of mathematics. This would be shown
very clearly by a theorem which “makes impossible that
someone should set up a certain well-defined system of
axioms and rules and consistently make the following as-
sertion about it: All of these axioms and rules I perceive
(with mathematical certitude) to be correct, and moreover
I believe that they contain all of mathematics” (7). As a
consequence, we are presented with the following di-
sjunction: either mathematics is incompletable (in the
sense that its evident axioms can never be comprised
in a finite rule), or there exist absolutely unsolvable
problems. The first alternative, Godel asserts, “entails
that human mind (even within the realm of pure
mathematics) infinitely surpasses the powers of any fi-
nite machine.” But does the process of understanding
more and more abstract terms necessarily involve the
convergence towards infinity of states of mind?

Turing was aware of the difficulties. His Inze/li-
gent Machinery addresses the issue of Godel's and
other theorems which restrict the powers of discrete
states machines. Those mathematical results “have
shown that if one tries to use machines for such pur-
poses as determining the truth or falsity of mathema-
tical theorems and one is not willing to tolerate an oc-
casional wrong result, then any given machine will in
some cases be unable to give an answer at all. On the
other hand the human intelligence seems to be able to
find methods of ever-increasing power for dealing
with such problems ‘transcending’ the methods availa-
ble to machines.” (11) But this argument, in Turing’s
opinion, rests essentially on the condition that the ma-
chine must not make mistakes, and yet this condition
is not a requirement for intelligence. Moreover,
“although it is established that there are limitations to
the powers of any particular machine, it has only been
stated, without any sort of proof, that no such limita-
tions apply to the human intellect.” (12)

Turing was always intrigued by the nature of
mental processes, but (differently from Gédel) he be-
lieved that, in the final analysis, they were the conse-
quence of physical processes. His conceptual analysis
rests on the identification of the activity of a human
computer with that of the finite state machine. Hod-
ges calls attention to Turing’s idea that “mental pro-
cesses are correctly described in the logical model in-
dependently of the particular physical embodiment,
and so can be embodied in a physical form other than
the brain.” (13) The possibility of realizing the logical
model gives rise to a process of feed-back, to the sear-
ch for those logical functions typical of intelligence
that might be implemented in an actual machine.

In a Lecture to the London Mathematical Society
(1947), Turing discussed possible physical implemen-
tations of his universal machine model. What
amounts to a machine capable of showing intelligen-
ce? Here the question of memory is crucial, and the
requirement for a large storage capacity emerges out
of the demand for a machine capable of anything mo-
re than rather trivial operations.

“Some years ago [...] I considered a type of machi-
ne which had a central mechanism, and an infinite me-
mory which was contained on an infinite tape. This ty-
pe of machine appeared to be sufficiently general. [...] It
was essential in these theoretical arguments that the me-
mory should be infinite. It can easily be shown that
otherwise the machine can only execute periodic opera-
tions. Machines such as the ACE may be regarded as
practical versions of this same type of machine.” (14)

But can computing machines only carry out the
processes that they are instructed to do? Let us sup-
pose, Turing suggests, to have set up a machine with
certain initial instruction tables, so constructed to be
capable of altering its own instructions out of all reco-
gnition and, as a result of this, of executing its tasks in
a much more efficient manner. When this happens are
we not obliged to regard the machine as showing in-
telligence? “As soon as one can provide a reasonably
large memory capacity it should be possible to begin
to experiment on these lines. [...] What we want is a
machine that can learn from experience. The possibi-
lity of letting the machine alter its own instructions
provides the mechanism for this, but this of course
does not get us very far.” (14)
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The issue of machine learning can be formulated
as follows. Different (Turing) machines can be regar-
ded as different proof-finding (Turing) machines. The
question then arises as to whether the procedure to be
applied for choosing between different machines is
computable. Would it be considered by Turing as a
matter of “intuition”? In line with Copeland, a mathe-
matician can be viewed as a proof-finding machine.
“When intuition supplies the mathematician with
new means of proof, then he becomes a different
proof-finding machine, capable of a larger set of
proofs.”(15) The search for new methods of proof is
motivated by problems to solve, and yet it seems to in-
volve some random element. How can a machine
perform this search? In so far as this is a process of
learning from experience, Turing’s answer would be
that a machine can do it by altering its own instruc-
tions. Does this imply a transformation of a proof-fin-
ding machine into a different one? According to Co-
peland, what is at issue here is a “partially random”
learning machine which “emulates the ‘activity of the
intuition’ in its walk through the space of proof-fin-
ding Turing machines” (15). Since it is determined by
both experience and intuition, the trajectory of the
learning machine through this space might be uncom-
putable.

The deterministic character of Turing machine
computations satisfies Godel’s requirement for a limi-
ted freedom in the activity of the mathematician — “If
anything like creation exists at all in mathematics,
then what any theorem does is exactly to restrict the
freedom of creation” (7) — however, while the (univer-
sal) Turing machine, as derivative of the human model
—“A man provided with paper, pencil, and rubber, and
subjected to strict discipline, is in effect a universal
machine.” (11) — is anchored in space and time, for
Godel mathematical experience involves an objective
reality out of space and time.

It is correct that a mathematical proposition says
nothing about the physical or psychical reality existing
in space and time, because it is true already owing to
the meaning of the terms occurring in it, irrespectively
of the world of real things. What is wrong, however, is
that the meaning of the terms (that is, the concepts
they denote) is asserted to be something man-made
and consisting merely in semantical conventions. The

truth, I believe, is that these concepts form an objecti-
ve reality of their own, which we cannot create or
change, but only perceive and describe. (7)

What does such an objective reality imply? To
state that the infinite mathematical concepts form an
objective reality does it not imply to cancel the diffe-
rence between finite and “infinite” intellect? If know-
ledge comes in with perception, beyond the limits of
experience, it has no meaning because it is detached
from experience. Here is the reason for the critical
analysis to negate the legitimacy to this form of passa-
ge to limit. As lucidly emphasized by Cassirer, if a fi-
nite intellect is “limited”; this limitation holds not
only a negative mark, but a positive one as well. It does
not show an accidental and exterior limit of the intel-
lect, it is rather a necessary condition for its activity
and fruitfulness. It is not licit to conceive a limit as a
simple obstacle to avoid: it rather delimits the only
domain in which our thought and our knowing can
realize themselves, the domain in which they find
their concrete meaning (16). Thus the restriction of
the intellect to the conditions and limits set by expe-
rience is its only possibility of realization.

In this perspective, the fault of Godel’s views lies
with getting over the empirical constrains of knowing,
while the significance of Turing’s conceptual analysis
emerges with a particular clearness.

Computability and physical principles

Recently the issue of computability has been ex-
tensively discussed by Sieg who recognizes the genui-
nely distinctive character of Turing’s analysis in the
move from arithmetically motivated calculations to
general symbolic processes that underlie them and ha-
ve to be carried out programmatically by human beings
[...]; it was the normative demand of radical inter-
subjectivity between humans that motivated the step
from axiomatic to formal systems. It is, for this reason,
that Turing brings in human computers in a crucial
way and exploits the limitations of their ‘processing
capacities’, when proceeding mechanically (17).

The issue of how computability impinges on the
relevant capabilities and limitations of the computer is

generalized by Gandy (18) to the case of a discrete
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mechanical device. What remains of Turing’s analysis,
when we purge the computer of the “human” aspect?
The answer is given by fixing principles for mechani-
sms that are as general as possible and by formulating
a mechanical version of the Turing thesis in terms of a
“Gandy machine”. By contrast to a Turing machine,
whose restrictions are set by human limitations, a
Gandy machine has to comply with physical limita-
tions, that is, a lower bound on the size of “atomic
components” and an upper bound on the speed of si-
gnal propagation, that is the speed of light. 4 “Jocality
condition” set by relativity theory.

A Gandy machine is a deterministic mechanical
device, which operates in parallel on an arbitrary num-
ber of bounded parts. Because of the parallelism in-
volved, here the machine has to recognize patterns in
a given state and act on them locally. Yet the states of
the computation remain “immediately recognisable”.
Improving the “(resolution) power” of the computer
does not change the scope of computability. The
Gandy thesis does not question the Church thesis, but
it does corroborate its significance from the point of
view of conceptual analysis. A Gandy machine does
not come to terms with the sensory limitations of a
human being but rather with physical constraints. In
line with Turing, the restrictions imposed on the ope-
rations performed by computers rest upon the compu-
ters’ capacities. For both, this means putting bounded-
ness conditions on the (set of) symbols a computer
can recognize. Thus, it can be argued that the strength
of this conceptual argument lies in the fact that an in-
timate and “inescapable” connection is established
between computability and “measurability”.

If computation is conceived as an “activity” which
can be simulated by a Turing machine, which charac-
teristic features of this activity make the simulation
possible? Turing focused on human computing acti-
vity; Gandy on discrete deterministic mechanical pro-
cesses. A further step has been taken by David Deut-
sch in 1985. Interpreting what is effectively calculable
as calculable by a quantum physical system allows him
to design a “universal quantum computer”. The de-
scription of a quantum computer is derived from a Tu-
ring machine, but using quantum theory to define the
operations carried out by the computer. Hence it can
exploit a multiplicity of parallel computational paths

in superposition as well as quantum interference to
amplify the probability of correct outcomes of compu-
tations.

If Turing machines calculate like humans, then
quantum Turing machines mimic physical systems
that calculate. What made this shift possible was the
preliminary assertion that “Every finitely realizable
physical system can be perfectly simulated by a uni-
versal Turing computing machine operating by finite
means.” (19) Following Deutsch a computing machi-
ne operates by finite means if: (i) only a finite subsy-
stem is in motion during anyone step; (ii) the motion
depends only on the state of a finite subsystem; (iii)
the rules that specify the motion can be given finitely
in the mathematical sense (for example by an integer).
“Turing machines”, Deutsch asserts, “satisfy these
conditions, and so does the universal quantum com-
puter.” In line with Turing and Gandy, once more fi-
niteness conditions set the scope of computability. Yet
in quantum computing, those finiteness conditions
mirror/rest on/reflect physical constraints.

The description of a guantum Turing machine is
derived from a Turing machine, but using quantum
principles to define the operations carried out by the
computing agent, which is now a physical system. It fol-
lows that the state of each single unit, called gubit, is a
“coherent superposition” of two classical logical states
(0 and 1). When a computational state can be reached
through several alternative paths, its probability is the
squared modulus of the sum of all the “probability am-
plitudes” for the constituent paths. Quantum compu-
tation arises from the possibility of exploiting a multi-
plicity of parallel computational paths in superposi-
tion as well as quantum interference to amplify the
probability of correct outcomes of computations. Sin-
ce quantum mechanics describes a state evolution by
means of a unitary operator, any quantum computing
operation is a unitary transformation on qubits.
Quantum interference allows a quantum Turing ma-
chine to act on coherent superpositions of a given sta-
te and evolve them @iz unitary operations into other
superpositions, from which the next state results with
a certain probability.

It is worth noticing two characteristic features of
quantum physics from which additional computatio-
nal power might flow. First, unlike probabilities, the
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probability amplitudes involved in quantum mecha-
nics do not necessarily introduce uncertainty. Since
the probability amplitude are complex numbers, they
may cancel each other and produce destructive interfe-
rence, or enhance each other and produce constructive
interference. Secondly, as a quantum state, and the-
refore a qubit, consists of a// the linear combinations
of its basis states, constrained only by the normaliza-
tion condition, it has to contain an infinite amount of
information. As a consequence of this all, it can be
tempting to conjecture that “instead of being limited
to shuffling a finite collection of [classical computa-
tional] states through permutation, one can act on qu-
bits with a continuous collection of unitary transfor-
mations.” (20) This appearance of infinity and conti-
nuity seems to question the requirement for finite
means. But quantum principles “protect” Turing com-
putability.

If one share Turing’s concern for effectively di-
stinguishable states, the question at issue here is how
to discern quantum (computational) states. As Dirac
(21) reminds us, the superposition that occurs in
quantum mechanics is of an essentially different natu-
re from any occurring in the classical theory. The
quantum superposition principle demands indetermi-
nacy in the results of observations in order to be capa-
ble of a sensible physical interpretation. In classical
physics, each constituent part of matter is itself made
up of smaller parts, in term of which its behaviour is
to be explained, and there is no end in this procedure.
By contrast, in quantum theory, it is necessary to give
an absolute meaning to size:

“In order to give an absolute meaning to size (...)
we have to assume that there is a limit to the finiteness
of our powers of observation and the smallness of the
accompanying disturbance - a limit which is inherent
in the nature of things and can never be surpassed by
improved technique or increased skill on the part of
the observer” (21).

In spite of the profound differences, Turing com-
putability and quantum physics present us with two
similar fundamental questions: how would it be possi-
ble to encode the input and read the output of a com-
putation or to make measurements and predictions
concerning a physical quantity without assuming a li-
mit to the fineness of our means of observation? How

could an adequate description of any “effective” proce-
dure dispense with the medium of the agent (compu-
ter or observer) capable of carrying out the operations
involved?

Open questions

As refers his biographer (22), Turing himself was
puzzled by the nature of quantum indeterminacy and
by the reduction rules which apply to quantum mea-
surement. He was not so much interested in the uni-
tary evolution of a quantum system as to the “unpre-
dictable” process of reduction which takes place in
quantum measurement. How could a continuum of
states be reduced to a discrete spectrum of observable
values? Could quantum physics, with its continuous
wave function and indeterminacy principle, be com-
patible with Turing computability? Turing seemed to
focus on the fact that subjecting a quantum system to
continual observation has the effect of preventing its
dynamical evolution (motion), and conjectured a
“non-linear” description in quantum mechanics besi-
de “linear” predictions. Could he have seen a connec-
tion between the problem of the linearity in quantum
mechanics and the question of the computability of
the intelligence? To convert a brain or a machine in-
to a universal machine, in Turing’s opinion, is the ex-
treme form of discipline, what is required in addition
to produce intelligence we call initiative. “Our task is
to discover the nature of this residue as it occurs in
man, and to try and copy it in machines.” (11) Might
quantum physics throw some light on the nature of
this residue?
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