
Design evolution in total knee replacement: which is the 
future?
A. Causero, P. Di Benedetto, A. Beltrame, R. Gisonni, V. Cainero, M. Pagano
Clinic of Orthopedic, Academic Hospital of Udine, Italy

Abstract. Total knee replacement (TKR) procedures have evolved in the last 40 years to guarantee improve-
ments implants life and an excellent joint function. The goals for the future evolutions are make easier pros-
thesis implantation and promote precision. The demand for TKR will rise for the life length increase and for 
the risk factors impact increase. Design evolution in total knee replacement has to satisfy these new necessi-
ties: anatomic congruence, range of motion, less material wear and better resistance to the weight bearing and 
to the stresses. This paper analyzes design evolution, materials development and future purposes in total knee 
arthroplasty. At the beginning, TKR history is treated; then we compare several prosthetic designs developed 
during years. At last the paper speak about recent innovations, like CAD (computer aided design) for exam-
ple, born to reach the most important goal in the future: better TKR design, is the one that better imitate 
natural knee characteristics, and that is able to integrate it-self with capsule-ligaments and muscle-tendons 
patient structures. (www.actabiomedica.it)
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Introduction

Total knee replacement (TKR) procedures, 
evolved in the last 40 years, to guarantee an improve-
ment of implants life and an excellent functionality for 
the patient and a cost reduction. 

The demand for TKR will rise for the life length 
increase and for patient’s weight increase too; moreo-
ver, a great number of patient older than 65, nowadays 
plays sport and pretends a better result than some years 
ago (1); at last must be considered the increasing of 
Asiatic demand. 

Design evolution in total knee replacement has 
to satisfy these new necessities: anatomic congruence, 
articolarity, less material wear and better resistance to 
the weight and to the stresses, cost reduction.

TKA history 

The first models of TKA, born to “imitate”, the 
knee, go back in the XIX century. The first attempt 
to build an artificial knee was in 1860 with Verneuil: 
he used articular capsule to recreate the joint. After 
this first attempt, there were other experiments with 
Ollier, Murphy and Campbell; they used different 
materials (like muscle, fat and fascia and pig bladder 
respectively).

Gluck in 1890 realized the first model of hinge 
prosthesis probably never implanted. It’s very difficult 
describing TKR design evolution: too many designs in 
too many years.

The first attempts to create a TKR, as we know it, 
occurred in the forties; partial prosthesis, only for the 
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femoral part of the joint (2) (Boyd in 1938; Campbell 
with the first prosthesis in Vitallium in 1940; Cabitza 
in 1950; Kraft and Levinthal in 1954) or for the tibial 
one (Burman in 1944; Kiaer in 1963; Macintosh in 
1956). Judet in 1947 was the first that tried to recreate 
a complete joint; modern TKR, was borned.

First models to obtain a marked success and a 
large diffusion were central (Walldius in 1954) or pos-
terior axis (Shiers in 1954). Among the hinge mod-
els subsequently achieved, let’s recall the Lagrange e 
Letournet (1970) with central rotating axis and the 
Guepar (1971) with totally posterior rotating axis. 

The Bousquet-Trillat’s prosthesis (1971), repre-
sented an evolution of previous hinge designs, display-
ing rotating movements which could accommodate 
tibial torsional stresses. Rotating movements were also 
displayed by Herbert’s prosthesis (1972) which was 
quite different in conception from traditional hinge 
models.

Since hinge models never respect normal knee 
kinematics, they found indication only in cases of se-
vere knee capsule-ligament laxity.

Gunston in 1965 was among the first to create a 
total knee prosthesis following the principle of sliding 
(polycentric TKA); the prosthesis allowed a limited 
bone resection and also, the lack of constraints enabled 
the mecanichal stresses to be absorbed by the joint 
capsule-ligaments apparatus. 

But, with this design the releasing of forces took 
place in a restricted area of the tibial ephyfisis, at the 
risk of the implant sinking. Hence, the tendency to 
construct uniblock bicondylar sliding prosthesis (Pal-
trinieri Freeman with Swanson, Upshaw and Walker 
in 1973).

In 1973 was also born Insall’s Total condylar pros-
thesis; Insall and Gunston’s models, probably, have been 
considered the first “modern prosthesis”. Insall’s design 
provided PCL sacrifice; stability on sagittal plane, war-
ranted by articular conformation. The design of the to-
tal condylar prosthesis included a chrome cobalt femo-
ral component with a symmetrical anterior flange for 
patellar articulation. The symmetrical femoral condyles 
had a decreasing sagittal radius of curvature posteri-
orly and were individually convex in the coronal plane. 
The double-dished articular surface of the tibial poly-
ethylene component was perfectly congruent with the 

femoral component in extension and congruent in the 
coronal plane in flexion. Translation and dislocation 
of the components were resisted by the anterior and 
posterior lips of the tibial component and the median 
eminence. The tibial component had a metaphyseal 
stem to resist tilting of the prosthesis during asym-
metrical loading. The tibial component originally was 
all-polyethylene, but metal backing was added later to 
allow more uniform stress transfer to the underlying 
cancellous metaphyseal bone and to prevent polyeth-
ylene deformation. The patella was resurfaced with a 
dome-shaped, all-polyethylene patellar component 
with a central fixation lug. Two early criticisms of the 
total condylar prosthesis were its tendency to subluxate 
posteriorly in flexion if the flexion gap was not balanced 
perfectly with the extension gap and a smaller range of 
flexion compared with prosthetic designs that allowed 
femoral rollback to occur. By not “rolling back,” the 
posterior femoral metaphysis in a total condylar knee 
impinged against the tibial articular surface at approxi-
mately 95 degrees of flexion. To correct these problems, 
the Insall-Burstein posterior cruciate–substituting or 
posterior-stabilized design was developed in 1978 by 
adding a central cam mechanism to the articular sur-
face geometry of the total condylar prosthesis. The cam 
on the femoral component engaged a central post on 
the tibial articular surface at approximately 70 degrees 
of flexion and caused the contact point of the femoral-
tibial articulation to be posteriorly displaced, effecting 
femoral rollback and allowing further flexion.

Concurrent with the development of the cruci-
ate-sacrificing total condylar prosthesis, the duopatel-
lar prosthesis was developed with the sagittal plane 
contour of the femoral component being anatomically 
shaped. This prosthesis (Kinematic Condylar in the 
80’s) included retention of the posterior cruciate liga-
ment (PCL). Originally, the medial and lateral tibial 
plateau components were separate, but this was soon 
revised to a one-piece tibial component with a cutout 
for PCL retention.

Many of these design characteristics are retained 
in current designs.

From the on we had very important evolutions in 
prosthetic design and in the operative techniques for 
TKR; in fact nowadays TKR is a surgical procedure 
very effective and easily reproducible for the treatment 
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of knee ostheoarthrosis. It values about 10 millions of 
TKR for year with an increase of 10% every year (3).

TKA: CR or PS

An overwhelming majority of TKR nowadays are 
“fixed-bearing” (less “mobile-bearing), divides equally 
in PCL preservation designs (CR) and PCL substi-
tution designs (PS). Many papers were carried out to 
evaluate which was the better design to guarantee bet-
ter results. It wasn’t easy highlighting big differences 
between this two designs (reliability and duration 
guarantee during the years, are similar for both the de-
signs) (4). Some authors, the most, prefer CR design 
(5-8); many papers, in fact shows that PCL retaining, 
guarantees extensor apparatus strength, agrees conser-
vation of proprioceptivity, consents bone stock pres-
ervation with less fracture risk and permits a revision 
surgery easier. Other authors don’t prefer one of two 
designs (similar for results and characteristics) (9-13); 
others prefer substitution design (14, 15).

For some authors PCL retaining isn’t useful for 
knee cinematic after TKA16,17; they think it’s very 
difficult to obtain a perfect balance between central 
pivot and collateral ligaments in CR design (18-20.

Insall, instead, noticed that PS designs were relat-
ed with patellar pain, malfunction, sub-dislocation and 
dislocation (21); another paper shows that PS design 
transmits heavier load on tibial axis with wear increas-
ing (22).

Prosthesis design in which both the cruciates 
aren’t sacrificed, isn’t frequently used because of bal-
ance difficulty between four knee ligaments. Femoral 
and tibial anatomic congruence in CR design it’s less 
than PS one; it permits a greater ROM, but also causes 
a “sliding” and wear stress increasing, and, consequent-
ly prosthetic components instability (23). Moreover 
a major anatomic congruence causes a less variability 
of knee kinematic with a better stability, but this isn’t 
sureness of better function of patient neo-joint. In fact 
notable articular congruence of PS design (on the fem-
oral and on the tibial component), consents a femoral 
posterior dislocation during hyper-flexion movements, 
certain a good factor, but consents also an anterior 
and posterior damage for major wear that, in certain 
events, evolves in a fracture (24-26). Moreover, femo-

ral resection necessary to create a femoral housing, can 
become a problem for smaller knee. At last, both CR 
and PS, there’s, besides tibial wear, posterior wear be-
tween tibial bearing and metal; this is a problem in 
case of insufficient prosthesis locking (27).

TKA: cementeted or cementless

Development of Porous coated design, was based 
on the use of polyethylene pegs to avoid cement; for 
some authors this was an option to increase implant-
life. Freeman, Hungerford, Kenna and Krachow were 
the firsts to develop this idea (28-30). Many papers 
have been done to evaluate which was the best design 
between this two models. One of these (31), analized 
results obtained on 143 pazients; in some of these pa-
tients were implanted a How-Medica Porous–Coated 
prosthesys; in the others a cemented design (How-
medica Kinematic II). The results highlighted a bet-
ter knee articularity in cemented design (106° against 
97° average of ROM); a major pain incidence and the 
need to using crutches for an higher lapse of time in 
porous coated design. The important factor in this, and 
in other papers (32, 33), was the rating of re-interven-
tion, particularly because of tibial component loosen-
ing (12% of patients with porous coated design against 
4% of complication, no-one for loosening, in cemented 
design). In time, improving of cemented TKA, reduced 
the use of porous coated prosthetic design.

TKA: symmetrical or asymmetrical

There’s another subdivision in fixed-bearing pros-
thesis: symmetrical TKA (Total Condilar, Johnson & 
Johnson or Insall-Burnstein posterior stabilized knee, 
for example) and asymmetrical TKR (PCA How-
medica for example). Symmetrical TKAs were born to 
reduce problems like patellar bad-sliding on trochlear 
groove or post-operative pain and to improve patients 
articularity. An example was Kinemax plus (Howmed-
ica), a symmetrical prostheis, evolution of Kinematic, 
an asymmetrical prosthesis; many papers compare this 
two different designs (34, 35). Symmetrical TKA, 
has a design with a trochlear groove parallel to knee 
flexion-estension axis, and deeper to increase patellar-
prosthesis congruence (Fig. 1). 
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An asymmetrical TKA has a throclear groove 
aligned with femur longitudinal axis.

These two characteristics consent, patellar tilt and 
sub-dislocation prevention, wear and patellar fracture 
reduction (36-39). Same papers showed similar values 
in post-operating ROM, with a less complications in-
cidence for symmetrical design. Post-operative pain 
was a recurrent factor in asymmetrical models, prob-
ably because of femoral component medial contour, 
that causes a capsular impingement with patellar pain 
and “clicking”. 

TKA: mobile or fixed-bearing

In the 70’s have been introduced “mobile-bearing” 
designs; their goals were to increase contact area be-
tween femur and tibia, to reduce load and polyethylene 
wear; other targets was to reduce dislocation strengths 
on bone/prosthesis interface and to permit a better 
movement freedom. At last they’d have permitted to 
surgeon a sort of “error margin” and in the meantime 
they’d have consented an improvement of implant 
functionality (40). Some papers confirmed for mobile 
–bearing design a wear reduction (41); clinic compari-
sons showed, instead, an important wear on tibia-bear-
ing interface (42, 43) called back-side wear, probably 
because of a less lubrification with sub-micron particle 
production [other papers (44, 45), don’t confirm this 

results; they indeed, show a major osteolisys in fixed-
bearing design]; the mobility on the femur/bearing in-
terface, instead, consent a less wear with a consequent 
reduction of loosening (46, 47). This theory too, is not 
confirmed by many papers (48-50). Moreover mobile 
bearing design could consent a better kinematic and 
a better “rotational mistakes” tolerance during operat-
ing procedure. Many papers, however, don’t confirm a 
ROM improvement (51) or a less rotational mistakes 
incidence (52). A limit of mobile-bearing design are 
bearing loosening; this design, in fact, need a better 
ligament balance. Many papers show a loosening in-
cidence about 1-9% (53, 54); loosenings are associated 
with popliteal thrombosis (55, 56) and pseudoaneu-
risms (57, 58).

Mobile-bearing finds indications in young pa-
tients, but a recent paper (13 years follow-up) show 
osteolysis rate (1,6 and 2,2% in fixed and mobile-bear-
ing) and revisions rate (3,7% and 2,7% respectively) 
similar between two designs (59). A sure advantage in 
mobile-bearings is less rate of lateral-release during 
procedures. A retrospective paper (carried out on 1300 
patients) (60) shows a lateral-release rate of 14,3% in 
fixed-bearing designs vs 5,3% in fixed-bearing ones.

Finally in mobile-bearing design there is a less 
patellar wear (61).

Survival of this two models and patient’s agree-
ment is similar (62-64).

Materials

Nowadays, engineers are trying to create and to 
develop new materials, to reduce bearing wear and 
to increase prosthesis resistance to the stresses. New 
highly cross-linked polyethylene, is a new material, 
born to reduce to a minimum free radical production 
and to optimize oxidation resistance. Many papers, 
demonstrated that this new material, reduce wear in 
comparison with earlier polyethylenes (65-68). This 
factor consents to research new design not as much to 
reduce wear but to recreate the normal knee anatomy.

All-tibial polyethylene design, was created to re-
duce wear and costs. First papers (69), showed a 10 
years implant survival very short (68,1%); but this 
papers showed results obtained with the first poly-

Figure 1. T. Ashraf*, D.J. Beard, J.H. Newman Symmetrical vs. 
asymmetrical total knee replacement—a medium term com-
parative analysis The Knee 10 (2003) 61–66
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ethylenes. Recent papers didn’t highlight difference 
between metal and polyethilene (70-72). On the con-
trary Asiatic engineers and farmaceutic farms, tried to 
develop this plastic device to reduce costs.

Nowadays there aren’t papers able to value which 
materials is better between polyethylene and metal. 
Highly cross-linked polyethylene, in fact, can guar-
antee a better anatomic congruence (73, 74), a major 
wear and oxidative resistance respect older materials 
(75, 76). A paper showed a similar survival (97% with 
a follow-up greater than 10 years) for all-poly design 
and metal-backed one (77). Other researches showed 
similar load tibial distribution in both designs (all-poly 
against metal-backed with a 10 mm or thicker poly 
bearing). 

There are some papers against all-poly design (78, 
79); those show a radiolucent line surrounding tibial 
components, that, if it’s thicker than 2 mm, could con-
sent a tibial loosening. 

Moreover, in metal-backed design, it’s possible 
using a modular tibial bearing, doing more conserva-
tive tibial cuts and in case of re-intervention, only 
bearing substitution it’s less expansive, in term of costs 
and bone stock, than all-poly tibial one.

For these reasons many surgeons choose metal-
backed design. 

Some researchers, recently, studied a new solu-
tion: using pre-forming mould to stuff with plastic 
materials, to create prosthetic component (like in an 
antibiotical spacer). Research and development of this 
new devices could be onerous in term of times and 
costs, but using this new materials could decrease the 
costs of implantation in the future and could give us a 
valid option to traditional designs.

Design evolution, means, also, reducing friction 
and wear between component surfaces to increase im-
plant survival and functionality. This regards surfaces 
lubrification (80). Fluid film lubrication will result 
in low friction, which could improve the kinematics 
and eliminate the ‘stick periods’ characteristic of metal 
on UHMWPE bearings. UHMWPE, have a coef-
ficient of friction in the range 0.05–0.2. In addition, 
the surface wear should be significantly reduced (81). 
Attempts to achieve fluid film lubrication have been 
made using polyether ether ketone (PEEK) and, par-
ticularly, polyurethane materials, producing what has 

been termed ‘cushion-form’ or ‘compliant-layer’ bear-
ings. In a series of analyses and experiments, measure-
ments were made of the friction and the wear of a met-
al femoral component articulating on a polyurethane 
layer bonded to a rigid substrate. With the bearing op-
erating in a mixed lubrication regime, the coefficient of 
friction was 0.001–0.02582,83. However, under more 
severe loading considerations, this value increased to 
0.08–0.14, accompanied by small scratches and tears 
on the bearing surface. In simulator tests, dimples 
were produced in the bearing contact due to creep. For 
low-modulus material, fragmentation occurred, but no 
such problem or wear fragments were noted for higher 
modulus. However, debonding was still observed. 

Further studies, focusing mainly on debond-
ing, were carried out. Flat polyurethane layers with a 
thickness of 2 mm and 3 mm were tested, as well as 
contoured surfaces, as is usual in TKR. When different 
force combinations were investigated, the results were 
variable; some combinations resulted in some delami-
nation, whereas others produced no damage. Taking 
all of the experiments together, it is evident that the 
advantages of low friction and wear are attainable.

However, further extensive work is indicated to 
demonstrate that the advantages apply under all feasi-
ble conditions of loads and motions, and likewise that 
the material and bonding are durable under these con-
ditions. Probably in the future, it will possible to create 
the “perfect bearing” using polyethylene and polyure-
thane together.

Other researchers tried to find new solutions and 
new materials also for femoral and tibial component.

We talk about ceramics. Ceramics are crystalline 
solid chemical compounds with a high chemical co-
valent-ionic bonds. The most important ceramics are 
Alumina and Zirconia. Alumina, or aluminum oxide 
(Al2O3) was the ceramic forerunner and had been 
used for the first time in 1980 by Oonish (84) (ce-
mentless alumina femoral and tibial component, poly-
ethylene bearing); this is a very hard, stable, and highly 
oxidized material, with a low coefficient of friction and 
low bending stress (85, 86), but exhibited low frac-
ture, loosening and ditching toughness values, which 
are lower than those of the metals used in orthopedic 
surgery (87-89). In 1990’s it started to use an alumina 
femoral component in association with a metal tibial 
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plate, to reduce rate of loosenings and in 1993 it began 
to use cemented alumina.

Natural alumina evolution was zirconia, or Zir-
conium oxide (ZrO2), used since 2001 in TKA (KU 
type, Kyocera Corp, Japan), a double stronger material 
than alumina, but very chimicaly unstable (90, 91). The 
addition of stabilizing materials such as yttrium oxide 
(Y2O3), created yttrium-stabilized tetragonal zirconia 
(Y-TZP) (92). But Y-TZP, was, unstable if submitted 
to heavy weights, with water and with fairly low tem-
perature (93-95).

Nowadays, there is a high-performance ceramic 
biocomposite material that combines the excellent 
material properties of alumina ceramics in terms of 
chemical stability, hydrothermal stability, biocompat-
ibility and extremely low wear and of zirconia ceram-
ics with its superior mechanical strength and fracture 
toughness: Biolox Delta (Lima-LTO and Ceram-Tec) 
(Fig. 2).

A Zirconia and Niobio alloy (Zr-2,5%Nb) is used 
to create Oxinium (Smith & Nephew for example), 
very biocompatible, with minimum biologic availabil-
ity and electrocatalytic activity, high resistance coef-
ficient for wear and friction (96, 97).

This new material showed more than twice as hard 
as CoCr on the articular surface (98, 99), equivalent 
device fatigue strength between the materials (100), 
less wear with OxZr compared with CoCr articulating 
on UMHWPE (counter face by 40%-90% depending 
on test conditions) (101).

Numerous papers studied ceramic designs: one of 
these, conduced with 218 patients, compared ceramic 

design (LFA-1 Kyocera) with traditional one (Kin-
emax How-Medica) (102); results was similar for two 
designs.

Another very recent paper (103), has been con-
duced on Bisurface prosthesis ( Japan Medical Mate-
rial), an “Hybrid design”: ceramic femoral component 
and CoCrMo tibial component with UHWMPE 
bearing (follow-up 15 years).

Survival at 10 years was 95.9% and 94,3% at 15 
years with a post-operative ROM 124°,2 ± 20°,8.

Limit of this model is production costs (104).

TKA evolution

With diagnostic and terapeutic evolution for OA 
treatment, that consent to postpone a surgical treat-
ment, there are many new evolutions that consent 
to improve results in terms of quality and survival of 
products.

Together new prosthesis designs, was studied 
other devices and technologies.

Some researchers thought to introduce embedded 
sensors in the components to monitor such parameters 
as force, number of cycles of use, wear depth, signs of 
loosening, temperature, and so on. Data obtained are 
very helpful, but this technique is very expansive and 
it’s difficult thinking to employ it if not in research 
centers.

The Unispacer was a contoured interpositional 
metal plate, although clinical results were not promis-
ing (105). A more recent concept of an early interven-
tion treatment is the Arthrosurface device (Franklin, 
MA, USA), consisting of a domed metallic strip, fixed 
to the bone by in-setting and by ingrowth plugs. This 
component can be used independently, or in conjunc-
tion with a plastic tibial plug fitting in the area un-
covered by the medial meniscus (106). The Orthoglide 
component (Advanced Biosurfaces Inc., Minnetonka, 
MN, USA) is a smooth metal interposition device 
which fits over the tibial surface.

A new approach is to project new designs based 
on imaging techniques data (CT, MRI, Fluoroscopy) 
processes with CAD-design technology (computa-
tional codes and computer aided design) (107). These 
data permit to individuate a series of clinical, radio-
graphic, and biomarker parameters to project pros-Figure 2. Biolox Delta
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thetic components characterized by measures and con-
formations as much as possible congruents with knee 
anatomy of patient, able to obtain a better balance with 
capsular-ligament structures, to avoid components im-
peachment and to optimize bone resurfacing (108). 
With these procedures was projected a “shell-knee” 
design to substitute only cartilage damages area. Sud-
denly were created new designs to resurface the area of 
damage (iDuo Conformis, Burlington, MA, USA). A 
paper was conducted to project new designs based on 
180 patients’ MRI images, with their clinical and bio-
marker data. By means of 3D-doctor Software (Able 
Software corp, Lexington, MA, USA), it have been 
obtained 180 articulation profiles. Another software, 
Rapidform one (Inus Technoly, Seoul, South Chorea), 
suddenly, permitted to reproduce a complete (bone, 
menisci, cartilage layers and ligaments) solid knee 
models (109). 

The distal medial femoral condyle showed the 
earliest loss, with posterior condylar thinning later still 
(Fig. 3). These data were confirmed if we’d examined 
intra-operative bioptic fragments 

This experience consent to analyze biomarker data 
to prevent OA start and to slow down OA evolutions; 
at the same time, it consents creation of new personal-
ized designs, with a better anatomical congruence and 
able to guarantee better results for prosthesic survival 
and functionality.

So imaging techniques, help us to recreate a knee 
as much as possible similar to pre-OA anatomical con-
formation.

In recent years, owing to the extensive data on 
TKA motion obtained using fluoroscopy, the goal that 
a TKA should reproduce ‘normal knee kinematics’ has 
often been expressed (Fig. 4).

These diagnostical techniques, moreover, have 
been permitted to individuate “critical points” in tra-
ditional TKA. Negative factors with present models 
have included: 

-  inadequate posterior displacement during 
flexion, which is one of the limiting factors in 
achieving high flexion (110, 111);

-  reduced internal tibial rotation in flexion, with 
the same effect;

-  excessive anterior sliding of the femoral com-
ponent on the tibial component during flexion, 
called ‘paradoxical motion’.

Figure 3. (Early OA Program director, Steven B. Abramson, 
MD, PhD, NYU-HJD)

Figure 4. (Arno, S., Forman, R., Glassner, P., Regatte, R., and 
Walker, P. S. MRI analysis of anteroposterior stability in the 
normal human knee. In Proceedings of the IMechE Confer-
ence on Arthroplasty 2009: From Early Intervention to Revi-
sion, Lincoln’s Inn Fields, London, 30 April–2 May 2009).In 
grey axial load, in blue posterior tibial shear force applied.
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These factors may contribute to the reduced per-
formance in high-demand activities and to the view of 
many patients that ‘their knee does not feel normal” 
(112, 113).

Many kinematic studies of the normal knee have 
shown that there is limited anterior–posterior dis-
placement on the medial side, in contrast to large dis-
placements on the lateral side (Fig.4). This reinforces 
the principle that the knee achieves its anterior–poste-
rior stability on the medial side, and its mobility on the 
lateral side: medial stability–lateral mobility.

Achieving this may be necessary if the knee is to 
feel ‘normal’ and function normally. 

The mechanism proposed for the anterior–poste-
rior medial stability involves the geometries and ma-
terials properties of the femoral and tibial condyles 
and the meniscus, under conditions of axial load. For 
small loads, the cruciate ligaments will be the primary 
anterior–posterior stabilizers, but as the axial load is 
increased, the condyles and meniscus will increasingly 
take over this role. This has implications for the design 
of the TKR. 

The approach is to formulate designs where the 
joint components restore the mechanics of the bearing 
surfaces, the menisci, and the cruciate ligaments. To 
investigate designs that could potentially restore nor-
mal mechanics, some engineers in a paper (114) con-
structed an up-and-down crouching machine, based 
on the “Oxford test ring” concept (115) (Fig. 5). 

This machine consents to imitate knee kinematic 
movements and to reproduce data obtained through a 
3D equipment. Intact knee specimens were run first, 
monitoring the 3-D motion of the femur and tibia. 
The cartilage surfaces of the specimen were digitized 
to define reference axis for describing the motion. Dif-
ferent TKRs were designed in the computer, and ste-
reolithographic (SLA) models were made in a tough 
low-friction plastic (Guided Motion Design or GM). 
These models were implanted in turn into the knee 
specimen and the 3-D motions were again measured.

There were obtained very interesting data: one of 
this was the “circular axis”, an axis passing through cen-
tre of sagittal outlines of the posterior condyles (116). 
Guided motion designs were produced with enhanced 
medial anterior–posterior stability and increased lat-
eral mobility, together with features to guide the knees 

into a normal neutral motion path. It was found that 
these designs reproduced much more closely the mo-
tion patterns of the anatomic knee, including avoid-
ance of the paradoxical motion. GM-design circular 
axis was more closely to original knee than PS or Cr 
designs. These data, were reproduced through using 
desktop knee test machine (117); this equipment per-
mits to apply torsional and compressive forces to the 
knees and to reproduce solid knee models.

The guided motion design displayed more normal 
medial behaviour, notably smaller anterior–posterior 
displacement and smaller laxities than PS and CR de-
signs. In these models the laxity reduced considerably 

Figure 5. (Yildirim, G., Walker, P. S., and Boyer, J. Total knees 
designed for normal kinematics evaluated in an up-and-down 
crouching machine. J. Orthop. Res., 2009, 27(8), 1022–1027.)
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when an axial compressive force was applied across the 
knee (probably to the action of the medial meniscus 
and the shape of the tibial bearing surfaces).

These experiments demonstrated that reproduc-
ing at least some of the mechanical characteristics of 
the anatomic knee was possible with a TKR where 
both cruciates were resected.

Analogue results have been obtained with Knee-
sim software (118), based on the “oxford test ring” too; 
it’s able to reproduce human activities as walking and 
crouching down.

Medial-pivot design

“Medial pivot” design, also called “medial rota-
tion” design (119, 120), reproduces a ball in a socket, 
a joint able to consent a bigger ROM than traditional 
prosthesis. Many authors (121-124), showed that a 
normal knee consents a minimum movement of medi-
al femoral condyle and a posterior translation of lateral 
femoral condyle, during flexion: this movement was 
called “medial pivot”.

This prosthesis has been created to reproduce 
these characteristics. Medial condyle has a design with 
an identical curvature radius on the coronal and on the 
sagittal plane, to recreate a sphere; lateral condyle is 
smaller than medial with a cylindrical configuration, 
able to stabilize knee and to control rotation.

Moreover polyethylene bearing, is asymmetrical, 
with a high medial condyle congruence and a minor 
lateral one. These innovations consent a lateral con-
syle posterior sliding and rolling, while medial condyle 
works as a pivot during knee flexion and guarantees an-
terior-posterior stability like. Medial pivot design con-
sents a better stability, a better ROM, a less wear stress 
on tibial surface and a longer polyethylene survival.

Many papers (125-127), showed that tradition-
al models aren’t able to reproduce, when implanted, 
roll-back why they were designed, but slide forward; 
this is called “paradoxical motion” and we’ve already 
described it. This phenomenon is reduced by medial 
pivot design, with a bigger stability (128, 129) and an 
important polyethylene wear reduction (130, 131). 
228 patients treated with this prosthesis (1-13 years 
follow up) (132), reported only 2 loosening failures; 
none of patients had instability. 

The other side of the coin, is that the notable me-
dial congruence and, consequently, the load on articu-
lar surfaces, can reduce implant survival (133).

A further evolution regards tibial bearings. A 
recent paper (134), showed differences between two 
bearing designs, both used in medial pivot prosthe-
sis: the original design (MP-design) and double-high 
design (DH-design). The difference between these 
two bearings is DH-design posterior profile, lower 3 
mm than MP-design; this consent a bigger posterior 
slope. Slope consents to grow more marked knee flex-
ion during femoral condyles roll-back on the bearing. 
This kind of articular geometry is one of the variables 
for knee flexion [other factors are soft tissues tension 
and PCL retention or sacrificing (135, 136)]. This pa-
per studied 4 alternative designs: MP and DH-design 
with or without PCL retention. PCL retention con-
sents in both design a bigger posterior translation; 
PCL sacrificing permits, instead, a better medial pivot 
movement. After all, paper doesn’t show differences 
between these two designs; DH-design doesn’t mod-
ify the ECPs (estimated contact points evaluated by 
means of CAD technology).

It isn’t a medial pivot model, but as medial-pivot de-
sign, an experimental prosthesis (created by the Depart-
ment of Mechanical Engineering in Taiwan), tried to 
reduce polyethylene wear with a new bearing and new 
condyle design (137) (Fig. 6). 

To reduce debridement particles, produced by femoral 
sliding on bearing, has been created a new design in which 
bearing has a double bend radius, to guarantee on the one 

Figure 6. Yeh-Liang Hsu Yung-Chieh Hung Ju-Zhong Yin 
Design of a Novel Total Knee Prosthesis Using TRIZ Journal 
of Medical and Biological Engineering, 26(4): 177-185 2006
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hand a bigger contact area between prosthetic component, 
on the other hand a smoother sliding between components. 
The bearing conformation, consents, moreover, an ante-
rior-posterior sliding between femoral and tibial compo-
nents. 

As we said, this is an experimental design, not yet 
studied “in vivo”; therefore further studies will have to 
guarantee prosthetic effectiveness.

High flex design

Hi-Flex designs were introduced, to increase knee 
ROM; this prosthesistries to reach complete knee flex-
ion by means of posterior rolling and translation (138). 
Traditional designs have a ROM limitation because 
of impingement between tibial and femoral surfaces. 
New Hi-Flex prosthetic designs, have an increased 
femoral condyles posterior offset. The tension of knee 
extensor apparatus, produced during flexion, reduces 
flexion in traditional design. Hi-Flex designs (Genesis 
II HI-Flex for example), have “deep flexion” bearings 
with modification in anterior, posterior and AP pro-
files. Anterior profile next to the patella, appears deep-
er than normal design, to avoid patellar tendon conflict 
and to reduce pain with reduction of the tension of 
the knee extensor apparatus; moreover this conforma-
tion, permits to minimize Hoffa’s removal. Besides 
new bearings have a deeper posterior slope (5 degrees 
instead of 4 degrees) (139), this factor creates a PCL 
housing and prevents interferences between bearing 
and femoral component. At last, bearing deeper region 
is 1 mm in the back respect to the bearing midline; this 
improves knee flexion and reduces tissues tension.

Other Hi-Flex designs (Nex-Gen CR Flex), pre-
sent some modifications on the femoral component; 
posterior condyle is thicker, to guarantee a higher 
contact with bone surface, at high flexion (155°); this 
contributes to the phisiological rolling-back move-
ment. Moreover posterior condyle is 1,5 mm lower 
than traditional design, to minimize tissues tension on 
the lateral compartment during hyper-flexion; besides 
it has a reduction of medial-lateral dimension, to make 
easier intra-operative setting. At last, this design has 
a “minus size”, thinner than 2 mm, on posterior con-
dyle, than bigger size, to increase further knee flexion. 
Really, many papers conduct about these new designs, 

(Zimmer LPS and Zimmer LPS Hi-Flex; Genesis II 
PS insert and Genesis II HF insert have been com-
pared), show that, there isn’t a post-operative flexion 
increase, respect to traditional designs (140-144).

On average, Hi-Flex guarantees a flexion 2,1° 
better than traditional design (2°-4,3°); without a 
functional advantage for the patients 

Gender Specifics TKA

There are three differences between these new de-
signs and the traditional ones: a more oblique femoral 
groove, a thinner anterior profile and a narrower con-
tour. These consent: to reduce friction between patella 
and prosthetic components; to eliminate the feeling of 
anterior “overstuffed” typical in women after TKR; at 
last to reduce resection bone.

Many papers were conduct to study these in-
novations (145-147); one of these, compared results 
reported by 85 women (some implanted traditional 
prosthesis, others gender specific one. 

The paper highlighted analogue flexion values 
between these two design (125° and 126° respectively 
for traditional designs and for gender-specific ones); 
minimal flexion was about 90°. Patients satisfaction 
was similar too: 8,3 for gender-specific design and 8,1 
for traditional one (range 0/10 complete discontent/ 
complete satisfaction). 

Moreover, paper showed that traditional design 
consent to model femoral distal part better than gen-
der-specific one. The last one, in fact, is smaller and 
expose more bone and this consent a bigger post-oper-
ative bleeding. The limit of these papers is a too much 
short follow-up (2 years); further researches need to 
obtain certain data.

Conclusions

As we told previously, we can say that better de-
sign for everyone, is the one that imitate own knee de-
sign. This means that, in the future the goal for schol-
ars will be the achievement of the movement, rather 
than mechanical activity restoration. In fact, every 
patients, can feel as “abnormal” a knee mechanical ac-
tivity, perfect but unable to reproduce own knee. New 
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designs are trying to reproduce physiological anatomy 
of the knee and to create a design able to integrate with 
capsule-ligaments and muscle-tendons patient struc-
tures. Computer assistance is essential to reach these 
results: tanks to data obtained by means of CAD, in 
the future will be possible to obtain design suitable for 
every patient.
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