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Abstract. Since cell mechanics has attracted the attention of a growing number of researchers, several mod-
els have been proposed to explain cell mechanical behavior, among which tensegrity is certainly the most
convincing one. Originally developed by the architect Buckminster Fuller, tensegrity structures are based on
the presence of discontinuous compression elements that balance the force generated by continuous tension
elements, thus reaching an equilibrium that is completely independent of gravity. This model is a useful tool
to predict cell spreading, motility and especially mechanotransduction, i.e. the capability to transform me-
chanical stresses into biochemical responses, a key process in homeostasis of many tissues that must contin-

uously withstand mechanical forces, like bone, but which is still poorly understood.

Key words: Tensegrity, force balance, cell mechanics, mechanotransduction, biochemical responses

Everybody experiences forces in his lives. Living
means to face forces that act on and surround
everything and everybody. Living organisms have
evolved in presence of mechanical forces and some tis-
sues have specialized to withstand forces, like gravity,
which otherwise would obstacle every movement and
every action of living beings. Although biochemical
pathways within cells have always attracted a great at-
tention by researchers, just recently some light has
been shed on the mechanical properties of eukaryotic
cells, on how cells sense mechanical forces and on how
cells react to them.

In facts, even if it has long been known that cells
possess a highly organized internal scaffold, the cyto-
skeleton (1), cells have usually been depicted as a semi
fluid membrane containing a liquid or jelly cytoplasm
(2). It is now widely accepted that cell functions are
regulated by mechanical forces (3-8), which influence
cell differentiation, proliferation (9) and gene expres-
sion (10). Therefore understanding physical structure

of cells has become more and more important, becau-
se it is the key factor to understand the profound link
existing between cell shape and cell function, between
physical forces and biochemical responses.

Among many biological models proposed over
the years, the tensegrity theory has proved to be capa-
ble not only to explain observed properties of the cel-
Is but also to predict some of their complex behaviors.

Tensegrity (“tensional integrity”) was first descri-
bed by architect Buckminster Fuller (11) as structures
composed by continuous tension elements and di-
scontinuous compression elements. Since these struc-
tures do not rely just on compression bearing compo-
nents, like a brick building or a stone arch would do,
they are typically independent of gravity, and do not
need as high a mass as a purely compression bearing
structure would under an equivalent load, because
compression elements (necessarily thick and bulky)
are minimized, and the force is distributed to tension
elements, that can be more slender and light. Probably
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the most striking examples of tensegrity structures are
Snelson’s sculptures, one of Fuller's most brilliant stu-
dents. His “stick and wire” creations clearly portray the
physical principles underlying Fuller’s theory (12),
making tensegrity very easy to visualize (Fig. 1).

In this kind of structures, certainly the most po-
pular ones, compression elements are basically com-
pression resistant struts, like wood or iron sticks or
bars, while tension elements are constituted by wires
or elastic strings. An essential feature of tensegrity is
the presence of pre-stress, an isometric tension balan-
ced by compression struts within the structure (like in
Snelson’s masterpieces), by external elements (like a
spider net attached to a tree’s branches), or by a com-
bination of both. According to an energetic principle
formulated by mathematicians, all pre-stressed struc-
tures assume the configuration that minimizes their
stored elastic energy (13).

Actually Fuller formulated his tensegrity theory
while studying geodesic architecture, i.e. structures in
which the elements are disposed along geodesic (mi-
nimum paths) lines. In facts geodesic domes (like the
building la Geode, in Paris), although very different-
looking from Snelson’s sculptures, are a good example
of tensegrity based on rigid, non extensible bars, with
a triangular arrangement, to locally support either
compressive or tensional forces. In this case the spatial
arrangement of the elements and the load distribu-
tion, not the difference in the components’ elasticity,
determines the structure’s stability. Good examples of
geodesic structures are the molecule of fullerene, an al-
lotropic state of carbon (14) (Fig. 2), or some viral ca-
psides.

Figure 1. Three Crowns, a stick and bar tensegrity sculpture by
K. Snelson (Baltimore, USA)

Figure 2. The Fullerene molecule shows a geodesic structure

Ingber and colleagues (15-17) first hypothesized
that cell structure is actually based on a tensegrity ar-
chitecture, that is, the cytoskeleton is formed by com-
pression resistant components and tensional elements
(Fig.3).

This theory fundamentally opposes the view of
the cell as an elastic membrane surrounding a liquid
cytoplasm, very popular to explain blood cell (18, 19)

Figure 3. A six struts tensegrity model has been applied to cel-
Is to explain their mechanical behavior
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and also attached cell (2, 20-23) mechanical behavior,
but unable to provide a convincing explanation of me-
chanotransduction, because it assumes that mechani-
cal stresses are homogeneously dispersed in the cyto-
plasm.

Tensegrity, as said, implies the presence of a pre-
stress within the cell, generated by the acto-myosin
molecular motors, carried throughout the cell by a
continuous meshwork of actin filaments, and balanced
by the extracellular matrix to which cells are attached,
by load bearing microtubules, and by rigid actin bund-
les (24). Unattached cells possess an isotropic shape,
round or circular, although they still possess a highly
structured (1, 25) but loosely packed cytoskeleton
(26), but they can rapidly convert their shape to an ex-
tended, oriented morphology, without changing the
microfilaments number (27) or the internal content of
F-actin (28). When cells attach to a substrate, they
spread out, thanks to a cytoskeleton rearrangement,
and form adhesion complexes to withstand the centri-
petal force internally generated by the actin filaments,
thus transferring the tension to the extracellular ma-
trix below (17). If the stiffness of the substrate is grea-
ter than the stiffness of the cytoskeleton, then the cell
spreads and flattens, pulling against its focal adhesions
(29). Using models made of sticks and elastic strings,
Ingber clearly replicated not only cell shape changes
but also nucleus polarization to the cell base during
cell spreading (30). The tensegrity model predicts also
that the axial tension between two focal adhesions de-
termines the formation of bundles of parallel actin fi-
laments (stress fibers) between the two adhesion com-
plexes (31-33), as it is observed in vitro. The actin fi-
lamentous network can also rearrange in the apical re-
gion of the cells, to form polygonal nets, sometimes
with a triangular assembly, resembling geodesic struc-
tures (34).

Many researchers have extensively investigated
the role of the filaments, in cell responses to applied
stresses, especially the role of microtubules and micro-
filaments, which seem to be more deeply involved in
withstanding mechanical forces.

Microtubules are formed by the assembly of a ba-
se unit, the a-p tubulin heterodimer, and present a
hollow structure (35), similar to a tube, with a higher
second moment of inertia, that makes them a better

candidate to withstand compressive loads (36). Micro-
tubules present a longer persistence length (&) than
actin filaments, where

E = Kb/KbT (1)

(T = temperature, K,=Boltzmann constant, k, = flexu-
ral rigidity of the filament). The persistence length is
a measure of the filament stiffness: if the contour
length of the filament (L) is much smaller than &, then
this appears rigid and straight, but if L~E then the fi-
lament bends as the result of the energy exchanges
with the surrounding environment (37). According to
direct microscopic observations (38, 39) microtubules’
€ is in the range between 1-6 mm, that is hundred fold
longer than microtubule length in living cells, and
their Young’s modulus is in order of GPa (40). This is
in agreement with the observation that microtubules
in solution appear straight*, but they often appear
curved and bent within cells?, as if subjected to a
compressive force (43).

On the contrary, actin filaments present a very
different structure and different mechanical proper-
ties. F-actin (filamentous) appears as a 8 nm-wide coil
formed by two strands of a globular protein, G-actin,
although the two strands are not independently stable
(44). Actin filaments are characterized by an exceptio-
nal elasticity (45-47), and a relatively low persistence
length (~17 wm) (40, 48) , that makes them subject to
bending fluctuations at cellular dimensions (49). Ne-
vertheless they usually appear straight within cells,
and specially abundant in structures associated with
the leading edge of migrating cells, where they coope-
rate to pull the cell forward (44, 50). The role of actin
in force generation and transmission in living cells has
been intensively studied over the years. Actin is at the
base of cell contractility, either through interactions
with myosin (51), or through localized gel-sol transi-
tions (52). Actin filaments distribute and support con-
tractile stress within the cell, and their disruption de-
termines reduction in cell stiffness, measured by Ato-
mic Force Microscopy (53) and by cell populated re-
constituted tissue models (54). Elasticity mapping of
fibroblasts by Atomic Force Microscopy revealed the
presence of tension lines, that coincided with actin fi-
laments, observed at fluorescence microscopy (55, 56).
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Microtubules seem to be extremely important for
internal stability of cells presenting strong asymme-
tries, i.e. presenting elongated appendices, like neu-
ronsY. In these cells, microtubules disruption determi-
nes neurite retraction (33, 57-59), even if the extracel-
lular matrix can provide an interchangeable load bea-
ring role (60). According to some authors (61), micro-
tubules balance just a small fraction of the internal
pre-stress (~14%), although it has been shown that,
under different conditions, microtubules can account
for more than 50% of the pre-stress balance, in fibro-
blasts grown on collagen lattices (62). On the other
hand, it has been shown that microtubule disruption
by colchicine determines an increase in the tractional
force exerted on the extracellular matrix through focal
adhesions (63-66), because a higher fraction of the ac-
tin generated stress is necessarily balanced by the ex-
tracellular matrix, while F-actin depolymerization by
cytochalasin is associated with a decrease in this force
(64, 67). Some concerns have been raised about the
possibility that the effect of microtubule disruption
might be actually the result of an activation of myosin
light chain kinase (65), with a subsequent increase in
myosin actin contraction, or from a change in the in-
tracellular calcium levels (68), rather than a tensegrity
force balance, but recent findings seem to confirm this
behavior also under conditions in which both the in-
tracellular calcium level and the myosin light chains
phosphorilation do not change (43).

Moreover, Pickett-Heaps and colleagues showed
that if a microtubule was selectively severed by a laser
beam, the neighboring microtubules appeared to
buckle, as it was logic to expect, considering that the
load was distributed among fewer compression bea-
ring filaments (69), and Green-Fluorescent-Protein
labeled microtubules appeared to buckle when they
impinged onto surrounding cell structures (70), but
straightened up when they passed the obstacle (71). In
cells whose spreading was confined and the shape was
influenced by ad-hoc designed micropatterned sub-
strates, microtubules can balance up to 70% of the in-
ternal pre-stress (72).

The role of microtubules however seems to vary
according to cell culture conditions and to cell type: a
recent study conducted on chondrocytes revealed that
viscoelastic properties of these cells before and after

microtubule depolymerization by colchicine did not
differ significantly (73).

On the other hand, intermediate filaments' role
in cell mechanics remains quite elusive. Although en-
coded by one of the largest families of genes within
the human genome (74) they are the least characteri-
zed and least known proteins of the cytoskeleton (75).
In vitro studies revealed unique viscoelastic properties,
which make them very resistant to breakage due to
mechanical strain (76, 77), and a high elasticity, with a
persistence length of 1000-1300 nm (78, 79): this
makes them good candidates to stabilize cells and
their internal compartments (80). Intermediate fila-
ments are important elements of what some resear-
chers call the nucleoskeleton (the structural proteins
within the nucleus (81)), but they also surround the
nuclear surface (82-84) and show associations with in-
tegrin rich focal contacts (85, 86), thus spanning from
the nucleus to the cell surface (87). Their remarkably
strong biochemical interactions with sequence-speci-
fic DNA and histones suggest the possibility that in-
termediate filaments might play an important role in
coupling mechanical signals and gene expression (81,
88-90). It has been suggested that intermediate fila-
ments may act as mechanical integrators (91), stabili-
zing nuclear form and cell structure (17, 92), holding
separate parts of the cell (nuclei, microtubules) in pla-
ce, opposing nuclear oscillatory expansion and con-
traction during DNA trascription (93). An important
study by Eckes and colleagues (67) showed that vi-
mentin deficient cells exhibited reduced mechanical
stability: these cells were about 40% less stiff than wild
type cells, and their cytoplasm could be easily torn un-
der mechanical deformation. Moreover these cells,
grown on collagen gels, presented a reduced contrac-
tion of the substrate, as a result of a decreased con-
tractility. To explain microfilaments’ role in cell me-
chanics, a six-strut tensegrity model has been used
(94). According to this model, microtubules are rigid
struts, bearing compression, actin microfilaments are
elastic elements, initially under tension (pre-stress)
and intermediate filaments are elastic elements, ini-
tially slack. This model predicts several properties ob-
served in living cells: cell stiffness is reduced when in-
termediate filaments are disrupted by acrylamide (95)
in comparison to untreated cells, and the difference
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progressively increases with increasing stress. It is cur-
rently believed that intermediate filaments can carry
tension but just at large applied mechanical strains,
when they contribute to cell stiffness (72, 76, 95). Mo-
reover it has been proposed that intermediate fila-
ments provide a later support to microtubules, thus re-
ducing their buckling under compression (94, 96).

The cytoskeleton is a complex scaffold in which
all these structures actually cooperate and are intrinsi-
cally interconnected. The filamentous networks are
interlinked so that the force is distributed among
them (97).

The result of the high connectivity that characte-
rizes every tensegrity structure is that applying a load
on a point of the network generates an action at a di-
stance, i.e. a structural rearrangement, due to the stress
transmission along the tensional continuum, until a
new equilibrium is achieved. As a consequence, cells
possess preferential pathways for the distribution of
stress within the cytoplasm, that transfer the mecha-
nical action at a distance from the integrins to many
cellular compartments, including the mitochondria,
physically anchored to microtubules (98), and the nu-
cleus (99), in a similar way to Snelson’s sculptures,
where pulling a strut determines a rearrangement of
the components that propagates to the whole structu-
re. In a famous study, Maniotis and colleagues (99)
demonstrated that a mechanical stress applied to the
cell surface bound integrins by a fibronectin coated
micropipette determined an alignment of the nuclei
along the tension lines and even a molecular rearran-
gement within nucleoli. Similar results could not be
obtained if the force was applied in a parallel direction
to the cell membrane (100), because in this case the
main load bearing structure was the submembranous
cytoskeleton (70). When mechanical stresses are ap-
plied to integrins, by surface bound microbeads, a
greater force is required to deform the cell, than if the
force is exerted on other kinds of membrane proteins,
like metabolic receptors (101). Recently, Hu and col-
leagues used a new technique of intracellular stress to-
mography to visualize mitochondria displacement by
mechanical stress applied by integrin bound ferroma-
gnetic beads, and demonstrated that intracellular
stress distribution pattern is modulated by pre-stress
levels (102).

An extremely interesting aspect of tensegrity
theory is the possibility to extend it to the whole body.
When one stretches an arm, or takes a step, he con-
tracts a series of muscles that transmit forces to ten-
dons, ligaments and eventually to bones. The human
and, more generally speaking, vertebrates’ body is thus
composed by rigid discontinuous elements, the bones,
resembling the previously considered compression re-
sistant struts, and a complex continuous network of
contractile muscles and elastic ligaments, characteri-
zed by the presence of a pre-stress, the muscle tone.
The spine would need a much bulkier structure if it
were just a compression column, and the surrounding
ligaments and muscles did not stabilize it. Muscles
pulling the femur medially reduce the buckling of the
bone under compression loads.

At a smaller size scale, cancellous bone structure
optimizes its mechanical efficiency, minimizing the
mass, by triangulating its small struts, the trabeculae,
in a similar way to a geodesic structure, and the histo-
logical structure of the bone tissue itself is actually for-
med by hydroxyapatite crystals, that contribute to the
compressive stiffness of the tissue and by a collagen
network, that provides tensile stiffness. At a molecular
level, a recent study analyzed proteins in terms of ten-
segrets, i.e. structural elements held together by at-
tractive and repulsive forces. According to this hy-
pothesis, a-helices or p-strands represent the rigid,
compression bearing elements, while the attractive or
repulsive atomic forces provide the stabilizing tension
(103). Several studies seem thus to propose a hierar-
chical tensegrity structure for organisms at different
size scales, with a sort of fractal perspective, in which
a tensegrity structure is integrated within a larger and
more complex structure possessing a tensegrity orga-
nization itself, creating a self maintaining and self ba-
lancing organism, in biochemical and mechanical
equilibrium with the surrounding environment.
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