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Abstract. Background and aim: Ovarian cancer is the leading cause of gynecological cancer deaths due to 
late diagnosis and high recurrence rates. While histopathological analysis is the gold standard for diagnosis, 
artificial intelligence (AI) models have shown promise in accurately classifying ovarian cancer subtypes us-
ing histopathology images. Herein, we introduce an end-to-end AI pipeline for automated identification of 
epithelial ovarian cancer (EOC) subtypes based on histopathology images and evaluate its performance com-
pared to pathologists’ diagnoses. Methods: A dataset of over 2 million image tiles from 82 whole slide images 
(WSIs) of major EOC subtypes (clear cell, endometrioid, mucinous, and serous) was curated from public and 
institutional sources. A convolutional neural network (ResNet50) was used to extract features, which were 
then introduced to 2 classifiers (NN and LightGBM) to predict cancer subtypes. Results: Both AI classifiers 
achieved patch-level accuracy (97-98%) on a test set. Furthermore, adding a class-weighted cross-entropy loss 
function to the pipeline showed better discriminative performance among subtypes. Conclusions: AI models 
trained on histopathology images can accurately classify EOC subtypes, potentially assisting pathologists and 
reducing subjectivity in ovarian cancer diagnosis. (www.actabiomedica.it)
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Introduction

Ovarian cancer (OC) is the 3rd most common 
gynecological cancer worldwide (1) and the 7th in the 
Kingdom of Saudi Arabia (KSA) among females 
(Saudi Council) (2). Due to the late stage of diagnosis 
and the high chance of recurrence (70%) (3), OC out-
ranks other gynecological cancers in terms of mortality 
rate. Despite all the advanced developments in medical 
technology in diagnosis and treatment, OC is still dis-
covered in the late stages, which ultimately affects the 
treatment options and prognosis. Clinically, ultrasound 
and tumor biomarkers are used as the conventional di-
agnostic tools to investigate suspected cases of OC (4). 
However, histopathological study is the cornerstone to 
confirm the diagnosis (5). According to the World 

Health Organization (WHO), ovarian cancers are 
classified histologically into epithelial, germ cell, and 
sex-cord stromal tumors, in which epithelial ovarian 
cancer (EOC) stands out with the highest incident 
rate (6). In 2018, the Global Cancer Observatory 
(GLOBOCAN) reported that EOC accounts for 
4.3% of cancer mortality annually, making EOC the 
most lethal gynecological cancer worldwide (7). EOC 
is a heterogeneous disease that consists of five histo-
logical subtypes: High-Grade Serous Carcinoma 
(HGSC), Low-Grade Serous Carcinoma (LGSC), 
Mucinous Carcinoma (MC), Endometrioid Carci-
noma (EC), and Clear Cell Carcinoma (CCC) (8). 
Each subtype exhibits unique histological morphology, 
molecular biology, pathogenesis, and clinical 
 behavior (6). Medical industries are interested in 
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implementing Artificial Intelligence (AI) in different 
fields. Multiple studies were conducted respecting AI 
recruitment in active patient care (9). According to 
Aliza Becker (10), AI usage in the medical field could 
be within one or more categories: 1. For research pur-
poses targeting pathology and/or treatment efficacy;  
2. To minimize possible complications, 3. To maximize 
patient care during ongoing treatment or procedure, 
and 4. In evaluating disease risk and predicting prog-
nosis or treatment efficacy. Myszczynska et al. shed 
light on machine learning utilization in diagnosing 
and treating neurodegenerative diseases (11). The AI 
models reviewed in the earlier study can analyze vari-
ous clinical parameters such as neuroimages, electro-
encephalograms, and even cognitive test performance, 
suggesting an era of the machine learning revolu-
tion (11). The application of AI is becoming a trend in 
pathology settings, particularly in diagnosing can-
cer (12). Dolezal et al. emphasized the significant role 
of deep learning in analyzing digitized histopathologi-
cal slides as it alleviates the workload on pathologists 
and detects features that could be easily missed (13). 
Deep learning (DL), a subtype of AI, may achieve 
human-level accuracy by abstracting the original data 
layer by layer, obtaining different levels of abstract fea-
tures, and using them for detection, classification, or 
segmentation (14). DL could predict clinical biomark-
ers, gene expression patterns, survival outcomes, and 
pathogenic mutations from traditional histoim-
ages (12). Convolutional neural networks (CNN) are 
the most prominent model of DL, preferred in image 
recognition and classification. The Residual network 
(ResNet) is a type of CNN with wide image recogni-
tion and classification applications in medical and 
non-medical trials (15). In 2022, Rahman et al. worked 
with ResNet50 to measure its efficiency in diagnosing 
breast cancer by reading and classifying mammo-
graphic images. ResNet50 scored 93% in accuracy, 
with less effort and more time effectiveness (9). 
ResNet50 has been used in histopathology image de-
tection, such as breast and lung cancer diagnosis, with 
92% and 97.49% accuracy, respectively (16). Several 
studies have discussed the use of AI in the diagnosis, 
classification, and prognosis of ovarian cancer. In 2018, 
researchers utilized Alexnet, a deep convolutional neu-
ral network (DCNN), to classify EOC into four 

subtypes: serous, mucinous, endometrioid, and clear 
cell, based on cytology (17). The study involved 87 
Hematoxylin-Eosin (H&E) stained tissue sam-
ples comprising 81312 images, including augmented 
images. The DCNN shall consist of five conventional 
layers, three max-pooling, and two fully reconnected 
layers. Aiming to improve network accuracy, this study 
used two input sets: the original slide set and the other 
with slide augmentation through image rotation and 
edge sharpening filters. The classification accuracy was 
only 72.76% in total, with endometrioid being the 
lowest in accuracy (64.53%). Data augmentation 
proved its role in increasing total accuracy by 5.44%. 
Yet, the study has some limitations as the model incor-
rectly classified endometrioid as serous, mucinous as 
clear cell, and clear cell as mucinous with an error rate 
of 15.11%, 12.64%, and 11.39%, respectively (17). In 
2022, a study was conducted to evaluate the perfor-
mance of four deep learning algorithms in histotype 
classification of the four main subtypes of epithelial 
ovarian cancer. Two datasets were collected from dif-
ferent centers with a total of 948 H&E-stained whole-
image slides, and each set was used for either training 
or testing only. The final diagnosis of the model is ref-
erenced to the diagnosis of expert pathologists. The 
performance of the four models was compared, and the 
best performer was selected based on the mean slide-
level diagnostic concordance. Results showed a mean 
slide-level diagnostic concordance of 80.97 ± 0.03% in 
one of the models, with an overall performance of 
0.7722 (Cohen’s Kappa). In case of discrepancy be-
tween the four models, two pathologists were asked to 
review the slides blindly (18). A retrospective cohort 
study was conducted to classify samples into either 
borderline ovarian tumor (SBOT) or high-grade se-
rous ovarian cancer (HGSOC) (19). The study in-
cluded 30 cases from the institutional pathology 
system database, with equal representation of each 
type. Researchers used a Support Vector Machine 
(SVM) classifier as an AI model to sort the sample 
based on 41 cellular features. By using Groovy scripts 
and QuPath, pathologists annotated the slides manu-
ally into stromal or tumor cells. Final results revealed 
an accuracy of 86.4%-89.1% and 85.4%-90.8% for 
HGSOC and SBOT, respectively. Moreover, the over-
all SVM accuracy reached up to 90.5%-90.7%. One of 
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the significant features that played a crucial role in dif-
ferentiation is Eosin OD staining intensity. Despite 
the high accuracy rate achieved, it is still strenuous for 
AI models to approximate human capacity. Multiple 
reasons for misclassification were observed, such as 
histological artifacts and under/over cellular segmen-
tation (19). Two studies used a convolutional neural 
network (CNN) to predict HGSOC response to 
 platinum-based therapy and the prognosis 
accordingly (20,21). Liu et al. aimed to identify the 
morphological features that can enhance the decision-
making towards a treatment plan and patient survival 
rate (20). Researchers utilized 248 samples from The 
Cancer Genome Atlas (TCGA); 208 samples were 
used to train inception V3, and the remaining 40 were 
used for testing. To limit model bias, specialized pa-
thologists selected regions of interest (ROI) from orig-
inal slides to be cropped into small tiles to fit the model 
input size. Finally, they tagged the tiles as resistant or 
sensitive to chemotherapy. Moreover, training was re-
peated 16 times with parameter adjustments to ensure 
model generalizability. Another measure was used to 
size up and down the number of resistance or sensitive 
cases to assess if it would affect the model accuracy. 
Eventually, 85% of patients were categorized correctly, 
with a specificity of 90% and sensitivity of 73%. Fur-
thermore, researchers stated that age, grade, and stage 
were not significantly associated with chemotherapy 
response. The main weakness of this study is the online 
data source, small validation, sample size, limited gen-
eralizability as it depends on TCGA only, and the data 
used mainly were high-grade tumors, which decreased 
the clinical heterogeneity (20). Whereas Laury et al. 
used samples of patients diagnosed and treated for 
high-grade extrauterine serous carcinoma at HUS 
Helsinki University Hospital between 1982 and 2013 
(21). Around 205 whole slide images were used to 
train the CNN, and 22 slides were used to test the 
model. The model could identify 18 out of 22 testing 
slides with a sensitivity of 73% and a specificity of 
91%. The positive predictive value was 89%, with an 
overall accuracy of 82%. The main weakness of this 
study was that molecular testing results were not avail-
able for all samples as the test was not routinely done 
(21). In a retrospective cohort study conducted in 
2020, Tanabe et al. used the CNN model AlexNet to 

analyze ovarian cancer patients’ serum glycopeptides 
by converting glycopeptides expression into a 
 2-dimensional (2D) barcode (22). A sample of 97 pa-
tients diagnosed with early-stage EOC was collected, of 
which 60% were used for training and 40% for valida-
tion. Two sets of barcodes were prepared with different 
alignments based on liquid chromatography elution 
time and principal component analysis, resulting in area 
under the curve (AUC): 0.881 and 0.851, respectively. 
Cancer Antigen 125 (CA125) and Human  
epididymis 4 (HE4) information were added to the 
barcode to enhance the diagnostic performance of 
the multicolored model further. This resulted in in-
creased diagnostics accuracy to 95%. Nonetheless, an 
Area Under the Receiver Operating Characteristic 
curve of almost 100% brings the model generalizabil-
ity into question. Thus, extending training samples is a 
must to eliminate possible over-fitting (22). Another 
observational cohort study aimed to predict the muta-
tion of Breast Cancer (BRCA 1/2) genes in ovarian 
cancer patients from H&E tissue using a  CLAM-based 
approach (23). A sample of 664 ovarian cancer pa-
tients was involved; 464 were utilized for the training 
process and 132 for validation. The study showed dis-
appointing results with low accuracy, reaching 62.9% 
and 87.9% specificity with a 16.7% sensitivity, which 
suggests that phenotype may not be strongly related to 
genotype (23). Other fields of research regarding AI 
and ovarian histopathological slide images included a 
retrospective cohort study that aimed to assess drug-
related ovarian toxicity (24). The study aimed to create 
a deep learning algorithm that can quantify corpora 
lutea (CLs) in H&E-stained ovarian tissue with simi-
lar accuracy to the pathologist’s assessment. The study 
was conducted on the ovarian tissue of female Sprague-
Dawley rats, and the sample was trained and validated 
using RetinaNet, the deep-learning algorithm of 
choice in this study. Due to the structural variability of 
rodent ovarian tissue, enumeration of CLs and evalua-
tion of ovarian toxicity can be time-consuming and 
challenging. Therefore, an automated method to quan-
tify CLs would potentially decrease the workload for 
pathologists. Overall, drug-related ovarian toxicity was 
evident in the form of either increase or decrease in the 
number of CLs. In addition, mistakes in counting CLs 
by RetinaNet were similar to the pathologist’s 
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and recall levels were observed in the ViT-Large-
P32-384 model with 98.86%, 97.18%, and 97.06%, 
respectively. Despite all effort and work in diagnostic 
AI models locally and globally, there are still gaps that 
need to be filled and areas to be improved (27). There-
fore, further studies are essential to fuel AI  
utilization in histopathology to rise to the advancement 
of other health fields in KSA. In this work, we present a 
complete end-to-end AI pipeline for the automated 
identification of epithelial ovarian cancer (EOC) sub-
types. This pipeline is developed and trained using a 
dataset of digital histopathological images representing 
the major EOC subtypes, and its performance is evalu-
ated against pathologists’ diagnoses.

Methods

Dataset collection and pre-processing

Sixty-four public cases, including (20x) whole 
slide images (WSIs), were retrieved from the Cancer 
Imaging Archive (CIA) and grouped into four sub-
types of epithelial ovarian cancer (clear cell carcinoma 
(CCC), endometrioid carcinoma (EC), mucinous 
carcinoma (MC), and serous carcinoma (SC) (28).  
In-house cases were collected from the archive of the pa-
thology department at King Fahad University Hospital 
(KFUH) between 2014 and 2023, ending up with 18 
Hematoxylin and Eosin (H&E) stained slides. The cases 
were also classified into the four most common epithelial 
ovarian carcinoma subtypes (CCC, EC, MC, and SC) 
(Figure 1). Experienced pathologists who assigned slide-
level labels and tumor annotation reviewed and con-
firmed the diagnosis. The collected slides were scanned 
and digitized at (20x) power in our facility by (Ventana 
I-Scan) to obtain 18 whole slide images in tiff format.

Statement on waiver of consent

Consent for this study has been waived due to its 
retrospective nature. The patients involved in the study 
were impossible to track. Additionally, the data in this 
study were retrieved from archived microscopic slides 
and contained no patient identification, ensuring the 
subjects’ anonymity.

Both public and in-house cases were divided into 
training (80%) and evaluation (20%) subsets.

variation, with a mean absolute difference of 0.57 + 
0.096 between the pathologists and RetinaNet. Fur-
ther training of the model with a further increase in 
sample size would improve the model’s accuracy (24).  
A systematic review published in 2023 included 45 
studies aiming to review the application of AI in path-
ological images for either diagnosis or prognosis of 
ovarian cancer (25). In these 45 studies, 80 models 
were used, including convolutional neural networks 
and their different architectures. CNN was the most 
commonly used (41/80), followed by support vector 
machine (SVM) (10/80), and random forest (6/80). 
Additionally, in most of the studies (18/45), the data 
source used for ovarian pathology slides is The Cancer 
Genome Atlas (TCGA), and other studies used their 
data (12/45). Most researchers have used segmenta-
tion to determine the region of interest for tumor tis-
sue. Most published research (nearly 37 papers) 
showed a high or unclear risk of bias due to limited 
data, such as the number of included patients and im-
ages (25). Another systematic review published in 
2022 included 39 studies (4). Of these studies, 7 used 
pathological images, 13 were based on serum tumor 
markers, and 19 used high-throughput data. The re-
view aimed to objectively assess AI algorithms’ appli-
cation in diagnosing and predicting ovarian cancer 
prognosis. The 7 studies that used pathological images 
to diagnose ovarian cancer showed specificity higher 
than 90%. However, there is a wide gap between the 
predictive performance of the current AI model and 
the clinicians’ experience, especially in prognostic pre-
diction, due to the narrow data set (4). In Saudi Ara-
bia, AI in diagnostic radiology is the most studied and, 
therefore, most advanced in the health intelligence 
field (26). Nonetheless, studies on AI applications in 
histopathology have arisen recently, including but not 
limited to Alahmadi et al. who proposed an integrat-
ing framework of Vision Transformer (ViT) and 
Model-agnostic Explanations (LIME) aiming to de-
tect and diagnose ovarian cancer based on histopatho-
logical images (27). Data has been collected from 20 
different medical centers. Introduced models exhibit 
outstanding performance in both training and testing 
sets. However, there was a slight decline in perfor-
mance from the training phase to the testing phase, 
which reemphasized the need for further work and 
model enhancement. The highest accuracy, precision, 
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approach tremendously reduces the consumption of 
computing resources and the time needed to train the 
network.

CNN extractor architecture

ResNet50, a CNN model, was used for feature 
extraction. The model is pre-trained on ImageNet. It 
has been frozen after removing its classifier head to 
preserve pre-learned weight.

Training process

Two classifiers (NN-based and lightGBM) were 
selected for experimental training on the extracted 
features. The NN-based classifier was configured 
with specific parameters: an Adam optimizer with a 
learning rate of 0.001 and a scheduler, a batch size 
of 128, 21 epochs with early stopping, and loss func-
tions utilizing CrossEntropy and Class-weighted 
CrossEntropy. Additionally, cross-validation was in-
corporated during the training phase. On the other 
hand, the lightGBM model was tuned with the fol-
lowing parameters: multiclass objective, a learning 
rate of 0.05, and a multi_error metric. Early stopping 
was applied after ten rounds, whereby training ceased 
if validation scores failed to improve for ten consecu-
tive rounds.

PyTorch was used as a Deep-learning frame-
work with the following experimental setup: GPU 
(NVIDIA RTX3060 12GB), RAM 32GB, CPU i7 
13th gen.

Extract tiles from the WSIs

The WSIs were huge (thousands of pixels), mak-
ing processing them entirely impossible, as the ex-
pected input size for the majority of deep learning 
models is 224 pixels. Therefore, all the public and in-
house WSIs were cropped into tiles of size (224 x 224 
pixels) (Figure 2). Using QuPath software version 0.5 
(29), pathologists first annotated tumor regions of in-
terest (ROIs) and then extracted tiles from those ROIs 
by a customized script.

Pre-processing techniques

Considering the variation in color between the 
different WSIs, image normalization and color stand-
ardization are essential to normalize the obtained 
patches before introducing them to the model. For 
that purpose, we adopted the following Torchvision 
function: (transforms.Normalize(mean=[0.485, 0.456, 
0.406], std=[0.229, 0.224, 0.225])).

Network architectures and training loop

Considering the large size of the dataset, rep-
resentative features from the resulting tiles were ex-
tracted and then used to train a classifier rather than 
training the network directly on the images. This 

Figure 1. Distribution of the different classes in the combined 
WSIs dataset.

Figure 2. Tiles extracted from the annotated tumor region.
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Network prediction performance

Both networks (lightGBM and NN) achieved 
comparable results, with NN achieving slightly higher 
performance (Table 2).

However, the discriminative strength among 
classes was much better when using class-weighted 
NN (NN-cw) (Table 3).

In our study, the overall misclassification was in 
the following order from the highest to the lowest er-
ror rate: 1. EC misclassified as SC, 2. MC misclassi-
fied as CCC, 3. SC misclassified as EC, and 4. CCC 
misclassified as MC (Table 4).

Performance evaluation metrics

Four metrics were used to assess network perfor-
mance (accuracy, precision, recall, and F1 score) along 
with confusion matrices for class discrimination:

 - Accuracy: percentage of correct predictions
 - Precision (specificity): accuracy of positive 

predictions.
 - Recall (sensitivity): the ability to identify all 

positive instances.
 - F1-score: harmonic mean of precision and recall
 - Confusion matrices for detailed analysis of 

classification errors

Results

Extracted tiles

Using QuPATH, over 2 million tiles/patches 
were extracted from the collected and annotated WSIs 
(public and in-house) (Table 1).

Table 1. Dataset details.

CCC EC MC SC Total

Public WSIs 25 5 6 28 64

Public tiles 750k 90k 110k 850k 1.800k

KFHU WSIs 2 3 3 10 18

KFHU tiles 21k 37k 37k 164k 259k

Table 2. Evaluation metrics: Network classification performance.

Acc.

Precision Recall F1 score

Avg CCC EC MC SC Avg CCC EC MC SC Avg CCC EC MC SC

lightGBM 0.97 0.95 0.98 0.91 0.94 0.97 0.91 0.99 0.79 0.9 0.99 0.93 0.98 0.84 0.92 0.98

NN 0.98 0.96 0.99 0.9 0.96 0.99 0.95 0.99 0.9 0.95 0.99 0.95 0.99 0.9 0.95 0.99

NN-cw 0.97 0.91 1 0.74 0.94 0.99 0.97 0.99 0.97 0.97 0.96 0.94 0.99 0.84 0.95 0.98

Abbreviation: Acc.: Accuracy

Table 3. Confusion matrices of the three classification networks’ performance.

NN NN-cw LGBM NN NN-cw LGBM NN NN-cw LGBM NN NN-cw LGBM

True 
Labels

CCC 99.02% 98.76% 98.68%  0.03%  0.07%  0.08%  0.68%  1.01%  0.73%  0.27%  0.16%  0.52%

EC  0.06%  0.01%  0.26% 86.47% 92.89% 78.66%  3.10%  3.18%  0.97% 10.37%  3.93% 20.11%

MC  3.13%  1.25%  8.61%  0.13%  0.21%  0.69% 96.58% 98.48% 89.95%  0.16%  0.05%  0.75%

SC  0.05%  0.04%  0.14%  0.70%  1.82%  0.78%  0.37%  0.40%  0.19% 98.89% 97.75% 98.89%

CCC EC MC SC

Predicted Labels
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Table 4. Misclassification error rate.

LightGBM NN NN-cw

EC misclassified as SC 20.11% 10.37% 3.93%

MC misclassified as CCC  8.61%  3.13% 1.25%

SC misclassified as EC  0.78%  0.70% 1.82%

CCC misclassified as MC  0.73%  0.68% 1.01%

Discussion

Histopathology image examination can be chal-
lenging and time-consuming for pathologists. An 
accurate diagnosis is essential to selecting a proper 
treatment and predicting prognosis, particularly with 
different morphologic features and variations of each 
subtype of EOC. For this reason, AI can provide a fast 
and accurate analysis of large and complex microscopic 
images. This study aimed to construct a full end-to-
end AI pipeline that helps pathologists identify EOC 
subtypes incorporating histopathological images from 
public and in-house cases. The AI workflow developed 
in this study demonstrated promising performance in 
accurately predicting the major subtypes of EOC from 
WSIs. Utilizing deep learning techniques to extract 
discriminative features along with LightGBM and 
NN classifiers resulted in patch-level accuracy rates of 
97-98% on the evaluation dataset. These results align 
with previous studies highlighting the potential of AI 
models for ovarian cancer classification and diagnosis 
from histopathology images. These masterful scores 
aligned with Alahmadi et al. results, with a score of 
97.07% (27). The large and diverse dataset of over  
2 million image tiles extracted from 82 whole slide 
images likely contributed to the strong generalization 
performance achieved by the models.

Although the overall accuracy is promising, it was 
variable among EOC subtypes. CCC shows a signifi-
cantly higher F1 score (0.98, 0.99, 0.99) with the three 
classifiers (lightGBM, NN, and NN-cw), respectively, 
which is slightly similar to SC (0.98, 0.99, 0.98). 
In comparison, EC scored the lowest (0.84, 0.90, 
0.84) (Table 2). A close look at the confusion matri-
ces (Tables 3, 4) revealed that EC is mostly misclas-
sified as SC, followed by MC, which is misclassified 
as CCC, which is consistent with Wu et al. findings.  

Wu et al. denoted these misclassifications to the un-
clear morphology of some of the samples (17). Ac-
cording to a study by Lim et al., pathological and 
immunohistochemical features were used to re-evaluate 
109 cases of EOC diagnosed by pathologists. Results 
showed that 30% of cases initially diagnosed as EC 
were reclassified to SC, emphasizing the overlapping 
morphology between the two subtypes (30). As illus-
trated in (Table 4), it is remarkable that all three mod-
els misclassify one specific subtype as another (EC as 
SC and MC as CCC) and vice versa, which strongly 
implies the intersecting morphological features rather 
than a model error. As addressed thoroughly by Lim 
et al., these morphological features include the Con-
firmatory Endometrioid Features (CEFs) outlined by 
WHO histological criteria for EC classification. The 
CEFs mostly associated with EC were: 1. Squamous 
metaplasia, 2. Endometriosis, 3. Adenofibromatous 
background, and 4. Borderline endometrioid or mixed 
Mullerian component. On the other hand, SC is char-
acterized by one or more of the following architectural 
patterns: solid, cribriform (pseudo-endometrioid), or 
transitional cell carcinoma-like (30). Additionally,  
MC and CCC are characterized by gastrointestinal-like 
epithelium with intracytoplasmic mucin and polygo-
nal cells with clear cytoplasm, respectively. Therefore, 
an immunohistochemical profile is essential for fur-
ther differentiation between these two subtypes (7). 
Another study supporting the previously discussed 
findings showed that EC was mostly misclassified as 
SC or MC. This study used four different deep-
learning models to classify the four main subtypes of  
EOC. Some models showed variation in the classifica-
tion due to the overlapping morphology. In some of 
the cases, the morphological feature that accounted for 
the misclassification was the presence of a transitional 
pattern, which is a pattern that can be detected in both 
EC and SC. In other cases, the absence of intracellu-
lar mucin made differentiating between EC and MC 
challenging. The discrepancy in classification between 
the models was reviewed by pathologists, who fur-
ther supported the diagnosis by the incorporation of 
an immunohistochemical profile of each subtype (18). 
However, certain limitations must be recognized. 
First, the study is constrained by a small in-house 
sample size. A larger sample would be ideal for more 
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 human expertise can potentially enhance the diagnos-
tic process.

Conclusion

This study proves that AI-based computational 
pathology techniques can achieve human-level ac-
curacy in ovarian cancer subtype classification from 
histopathology images. If properly validated, such 
AI-assisted diagnostic tools could greatly benefit pa-
thology workflow by reducing subjectivity, decreasing 
inter-observer variability, and increasing efficiency 
compared to manual review alone. Future research 
should focus on prospective clinical validation and ex-
tend this approach to other cancer types and diagnos-
tic tasks in digital pathology.
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robustly validating the AI model’s accuracy. Due to the 
limited dataset available from KFUH, including data 
from additional hospitals or provinces would likely  
yield more accurate and generalizable results.  Second, 
there is an imbalance in the number of samples 
across the subtypes. Despite the researcher’s efforts to 
ensure the inclusion of all subtypes, the overrepresenta-
tion of SC subtypes was noticeable in this study sample, 
as SC is the most common EOC subtype in KSA and 
worldwide (6). The NN-cw model was an attempt to 
overcome this limitation. When class-weighted tech-
niques were applied during training, the NN classifier 
showed a better discriminative ability between the dif-
ferent cancer subtypes. Third, a shortage of computer 
resources restricted data input and analysis.

Despite these limitations, the current paper pro-
vides an excellent accuracy level, reaching 97-98%, 
and encourages more work concerning AI application 
in general pathology settings and EOC classification. 
While this study primarily focused on the accuracy of 
AI models in classifying ovarian cancer subtypes, it 
is essential to consider their potential to reduce diag-
nostic times in clinical practice. Once integrated into 
routine workflows, AI systems can expedite the analy-
sis of large histopathological datasets, providing rapid 
preliminary results, especially in secondary centers. 
The practical adoption of AI systems also depends 
on their cost-effectiveness. AI-assisted diagnostics 
can potentially reduce the need for second opinions 
from reference centers, leading to savings in time and 
costs associated with transport, consultation, and ad-
ditional testing. In some cases, AI could minimize the 
need for expensive molecular tests by improving diag-
nostic accuracy. A formal economic analysis compar-
ing AI-driven workflows with traditional pathology 
practices will be essential to thoroughly assess AI in-
tegration’s financial benefits and feasibility, which we 
plan to address in future work. While the experience 
of trained pathologists remains unmatched, particu-
larly for complex or ambiguous cases, our findings in-
dicate that AI systems can effectively handle routine 
diagnostic tasks. By automating the classification of 
epithelial ovarian cancer subtypes with high accu-
racy, AI can help pathologists manage their workload 
more efficiently, allowing them to dedicate more time 
to complex cases. This collaboration between AI and 



Acta Biomed 2024; Vol. 95, N. 5: e2024176 9

15. Taye MM. Theoretical understanding of convolutional neural 
network: concepts, architectures, applications, future direc-
tions. Computation. 2023; 11(3):52. doi: 10.3390/computation 
11030052.

16. Muhammed T. Automated classification of histopathol-
ogy images using transfer learning. Artif Intell Med. 2019; 
101:101743. doi: 10.1016/j.artmed.2019.101743.

17. Wu M, Yan C, Liu H, Liu Q. Automatic classification of 
ovarian cancer types from cytological images using deep 
convolutional neural networks. Biosci Rep. 2018; 38(3): 
BSR20171150. doi: 10.1042/BSR20180289.

18. Farahani H, Boschman J, Farnell D, et al. Deep learning-
based histotype diagnosis of ovarian carcinoma whole-slide 
pathology images. Mod Pathol. 2022; 35(12):1983-90.  
doi: 10.1038/s41379-022-01146-z.

19. Jiang J, Tekin B, Guo R, Liu H, Huang Y, Wang C. Digital 
pathology-based study of cell- and tissue-level morphologic 
features in serous borderline ovarian tumor and high-
grade serous ovarian cancer. J Pathol Inform. 2021; 12:24.  
doi: 10.4103/jpi.jpi_76_20.

20. Liu Y, Lawson BC, Huang X, Broom BM, Weinstein JN. 
Prediction of ovarian cancer response to therapy based 
on deep learning analysis of histopathology images. Can-
cers (Basel). 2023; 15(16):4085. doi: 10.3390/cancers 
15164044.

21. Laury AR, Blom S, Ropponen T, Virtanen A, Carpén OM.  
Artificial intelligence-based image analysis can predict out-
come in high-grade serous carcinoma via histology alone. Sci 
Rep. 2021; 11(1):19165. doi: 10.1038/s41598-021-98480-0.

22. Tanabe K, Ikeda M, Hayashi M, et al. Comprehensive se-
rum glycopeptide spectra analysis combined with artificial 
intelligence (CSGSA-AI) to diagnose early-stage ovarian 
cancer. Cancers (Basel). 2020; 12(9):2551. doi: 10.3390 
/cancers12092373.

23. Nero C, Boldrini L, Lenkowicz J, et al. Deep-learning to 
predict BRCA mutation and survival from digital H&E 
slides of epithelial ovarian cancer. Int J Mol Sci. 2022; 
23(19):11539. doi: 10.3390/ijms231911326.

24. Hu F, Schutt L, Kozlowski C, Regan K, Dybdal N,   
Schutten MM. Ovarian toxicity assessment in histopatho-
logical images using deep learning. Toxicol Pathol. 2020; 
48(2): 350-61. doi: 10.1177/0192623319877871.

25. Breen J, Allen K, Zucker K, et al. Artificial intelligence in 
ovarian cancer histopathology: a systematic review. NPJ Precis 
Oncol. 2023; 7(1):83. doi: 10.1038/s41698-023-00432-6.

26. Aljerian N, Arafat M, Aldhubib A, et al. Artificial intel-
ligence in healthcare and its application in Saudi Arabia. Int 
J Innov Res Med Sci. 2022; 7:666-70. doi: 10.23958/ijirms 
/vol07-i11/1558.

27. Abdulrahman A. Towards ovarian cancer diagnostics: a 
 vision transformer-based computer-aided diagnosis frame-
work with enhanced interpretability. Results Eng. 2024; 23: 
102651. doi: 10.1016/j.rineng.2024.102651.

28. Wang C-W, Chang CC, Lo SC, et al. A dataset of histo-
pathological whole slide images for classification of treat-
ment effectiveness to ovarian cancer (Ovarian Bevacizumab 

References

1. Momenimovahed Z, Tiznobaik A, Taheri S, Salehiniya H. 
Ovarian cancer in the world: epidemiology and risk fac-
tors. Int J Womens Health. 2019; 11:287-99. doi: 10.2147 
/IJWH.S197604.

2. Al-Rawaji A. Cancer Incidence Report 2020 - Kindom 
of Saudi Arabia, Saudi Health Council, National Cancer 
Center, Saudi Cancer registry, 2020,1-81.

3. Mikdadi D, O’Connell KA, Meacham PJ, et al. Applica-
tions of artificial intelligence (AI) in ovarian cancer, pan-
creatic cancer, and image biomarker discovery. Cancer 
Biomark. 2022;33(2):173-84. doi: 10.3233/CBM-210301.

4. Zhou J, Cao W, Wang L, Pan Z, Fu Y. Application of arti-
ficial intelligence in the diagnosis and prognostic prediction 
of ovarian cancer. Comput Biol Med. 2022; 146:105608. 
doi: 10.1016/j.compbiomed.2022.105608.

5. Orsulic S, John J, Walts AE, Gertych A. Computational 
 pathology in ovarian cancer. Front Oncol. 2022; 12:924945. 
doi: 10.3389/fonc.2022.924945.

6. Devouassoux-Shisheboran M, Genestie C. Pathobiology 
of ovarian carcinomas. Chin J Cancer. 2015;34(1):50-5.  
doi: 10.5732/cjc.014.10273.

7. Ignacio R, Susanna L, Belén Pérez M, Andrés Poveda V, 
José P. Morphological and molecular heterogeneity of epi-
thelial ovarian cancer: therapeutic implications. Eur J Cancer 
Suppl. 2020; 15:1-15. doi: 10.1016/j.ejcsup.2020.02.001.

8. Lalwani N, Prasad SR, Vikram R, Shanbhogue AK,  
Huettner PC, Fasih N. Histologic, molecular, and cytogenetic 
features of ovarian cancers: implications for diagnosis and 
treatment. Radiographics. 2011;31(3):625-46. doi: 10.1148 
/rg.313105066.

9. Rahman H, Naik Bukht TF, Ahmad R, Almadhor A, 
 Javed AR. Efficient breast cancer diagnosis from complex 
mammographic images using deep convolutional neural 
network. Comput Intell Neurosci. 2023; 2023:7717712.  
doi: 10.1155/2023/7717712.

10. Aliza B. Artificial intelligence in medicine: what is it doing 
for us today? Health Policy Technol. 2019; 8(2):198-205. 
doi: 10.1016/j.hlpt.2019.03.004.

11. Myszczynska MA, Ojamies PN, Lacoste AMB, et al. Ap-
plications of machine learning to diagnosis and treatment 
of neurodegenerative diseases. Nat Rev Neurol. 2020; 
16(8):440-56. doi: 10.1038/s41582-020-0377-8.

12. El-Ghany SA, Azad M, Elmogy M. Robustness fine-tuning 
deep learning model for cancers diagnosis based on histo-
pathology image analysis. Diagnostics (Basel). 2023; 13(4): 
806. doi: 10.3390/diagnostics13040699.

13. Dolezal JM, Kochanny S, Dyer E, et al. Slideflow: deep 
learning for digital histopathology with real-time whole-
slide visualization. BMC Bioinformatics. 2024; 25(1):134. 
doi: 10.1186/s12859-024-05758-x.

14. Cai L, Gao J, Zhao D. A review of the application of deep 
learning in medical image classification and segmenta-
tion. Ann Transl Med. 2020; 8(11):713. doi: 10.21037/atm 
.2020.02.44.



Acta Biomed 2024; Vol. 95, N. 5: e202417610

Correspondence:
Received: 10 September 2024
Accepted: 12 October 2024
Dr. Haitham Kussaibi, MD
Department of Pathology, College of Medicine, 
Imam  Abdulrahman bin Faisal University
King Faisal Road 31441, Dammam, Saudi Arabia
E-mail: hkussaibi@iau.edu.sa
ORCID ID: 0000-0002-9570-0768

Response) (Version 2) [Data set]. Cancer Imaging Arch. 
2021. doi: 10.7937/TCIA.985G-EY35.

29. Bankhead P, Loughrey MB, Fernández JA, et al. QuPath: 
open-source software for digital pathology image analysis. 
Sci Rep. 2017; 7:168-78. doi: 10.1038/s41598-017-17204-5.

30. Lim D, Murali R, Murray MP, Veras E, Park KJ, Soslow RA. 
Morphological and immunohistochemical reevaluation of 
tumors initially diagnosed as ovarian endometrioid carci-
noma with emphasis on high-grade tumors. Am J Surg Pathol 
2016; 40:302-12. doi: 10.1097/pas.0000000000000550


