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Abstract. Background and aim: Attention deficit hyperactivity disorder (ADHD) is heterogeneous neurobe-
havioral disorders that co-exist with cognitive and learning deficits affecting 3-7% of children. We study the 
role of rosemary in the protection of the prefrontal cortical neurons against rotenone-induced ADHD in 
juvenile rats. Methods: Twenty-four juvenile rats were divided into four groups (n=6): control group, received 
olive oil 0.5 ml/kg/day/ I.P. for 4 weeks, rosemary group received rosemary 75 mg/kg/day/ I.P. for 4 weeks, 
rotenone group received rotenone 1 mg/kg/day/ I.P. dissolved in olive oil for 4 days and combined group re-
ceived rotenone 1 mg/kg/day/ I.P. for 4 days and rosemary 75 mg/kg/day/ I.P. for 4 weeks. Results: Rotenone 
group showed higher impulsivity with reduction in the recognition index and total locomotor activity. How-
ever, combined group showed significant improvement in the recognition index and the total locomotor activ-
ity. Neurochemical analysis disclosed that rotenone decreased levels of GSH and significantly increased lipid 
peroxidation and oxidative stress. The administration of rosemary amended these neurochemical changes. 
Rotenone caused a significant increase in serum amyloid protein A and C-reactive protein levels indicating a 
marked state of inflammation. Rosemary ameliorated these biochemical changes. The immunohistochemical 
expression of tyrosine hydroxylase was decreased in the rotenone group. On the other hand, caspase-3 was in-
creased in the rotenone group. PCR confirmed immunohistochemical results for gene expression. Conclusions: 
The findings of the behavioral, neurochemical, biochemical, immunohistochemical and molecular outcomes 
suggested that rosemary could fight oxidative stress, inflammation and apoptosis in the prefrontal cortex of 
rotenone-induced ADHD in juvenile rats. (www.actabiomedica.it) 
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Introduction

Attention deficit hyperactivity disorder (ADHD) 
is a largely predominant childhood-onset neurodevel-
opmental disorder characterized by developmental ex-
tremes and impaired symptoms, including intellectual 

and behavioral symptoms such as hyperkinesia, inat-
tention, confusion, and impulsivity, occurring before 
age 12 and often continuing into adulthood (1-4). 
ADHD occurs when children have many troubles in 
focusing, behaving appropriately, and doing their usual 
tasks. This can lead to problems in their schoolwork 
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and day-to-day lives (5). Though ADHD was previ-
ously thought to be a childhood disorder, longitudinal 
studies have shown that most patients’ ADHD symp-
toms persist into adulthood (6). ADHD animal mod-
els were produced using rotenone, 6-hydroxydopamine 
and bisphenol-A to display similar behaviors and ge-
netic abnormalities to those found in human cases of 
ADHD, furthermore, those models can be used to 
identify the causes and pathology of ADHD (7, 8).

Rotenone, a plant-derived pesticide, is the most 
potent neurotoxin that belongs to the rotenoid fam-
ily. Due to its lipophilic nature, rotenone can eas-
ily cross the blood-brain resulting in suppression of 
mitochondrial Complex I of the electron transport 
chain (9, 10). Previous studies suggested that rote-
none may affect the central nervous system of both 
children and adults by oxidative stress and thus trig-
gering neuronal cell death (11).  High doses (16 mg/
kg) or repeated low doses of rotenone (1 mg/kg/day 
for 4 days) cause general restlessness and excessive 
movement in juvenile rats (8). In neonatal rat models, 
rotenone causes a functional disability involving the 
dopaminergic system, thus proposing the likelihood 
of inflammation-induced neurological dysfunction 
(12). Due to changes in the brain’s micro- and mac-
rostructure, a hypothesis was made stating that an 
adult ADHD diagnosis is correlated with structural 
abnormalities in the frontal, temporal, basal ganglia, 
and parietal regions (13). 
Due to their few side effects, natural medications with 
strong anti-inflammatory and antioxidant qualities are 
utilized as the favored treatment for ADHD since the 
disorder exerts oxidative stress-mediated dopaminer-
gic neurotoxicity (14). Rosmarinus officinalis L. is an 
aromatic plant with an amiable smell, belonging to the 
Lamiaceae family. The plant has derivatives like ursolic 
acid, rosmarinic acid, micromeric acid, and oleanolic 
acid making it a possible natural antioxidants source 
(15). Rosmarinic acid acts as an immune regulator in 
various ways, such as an antioxidant, antiangiogenic, 
anti-apoptotic, anti-fibrotic, chemo-preventive, and 
Alzheimer’s disease preventive (16). Although these 
natural substances possess antioxidant and anti-in-
flammatory characteristics, their neuroprotective ef-
fects are deficient. Hence, in the current study, we 
analyze the properties of rosemary leaf extract in a 

model of ADHD induced by rotenone in juvenile rats. 
Because rosemary extract contains several biologically 
active compounds, we believe it has neuroprotective 
mechanisms through its antioxidant and anti-inflam-
matory properties in a rotenone-induced ADHD rat 
model.

Materials and methods

Animals

Twenty-four juvenile albino rats (5-days old) were 
bought from the Medical Experiment Research Cen-
tre (MERC) of Mansoura University. The rats were 
weaned at postnatal day 21 (P21) so they would grow 
and behave normally in the experiment. After wean-
ing, every two to three rats were kept in the same cage 
and given drinking water and standard rodent chow. 
All rats were kept at constant temperature and hu-
midity (22°C and 55%, respectively) and on a diurnal 
rhythm of 12-hour light/dark cycle. Every effort was 
made to reduce animal suffering.

Chemicals used

Rotenone and rosemary extract were obtained 
in powder forms from Sigma -Aldrich™ (Saint Lou-
is, MO, USA). Olive oil was secured from Al Nasr 
Company (Egypt) for chemical industries. Antibodies 
against TH and caspase-3 were bought from Abcam 
(Egypt). 

Study design

The rats were divided randomly into 4 groups (n = 6/
group):
- Group I (Vehicle group): control group received ol-

ive oil at a dose of 0.5 ml/kg/day through intraperi-
toneal (i.p.) injections for 4 weeks. 

- Group II (Rosemary group): received rosemary ex-
tract at s dose of 75 mg/kg/day i.p. for 4 weeks (16).

- Group III (Rotenone group): received rotenone at a 
dose of 1 mg/kg/d for 4 days i.p.  dissolved in olive 
oil (8).

- Group IV (Rotenone + Rosemary group): received 
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both rotenone at a dose of 1 mg/kg/day i.p for 4 
days and rosemary extract at 75 mg/kg/day i.p for 4 
weeks. 

Behavioral assessment

The assessment began on day 29 after the last in-
traperitoneal injection. The rats were accustomed to 
the test room 30 minutes before the start of the analy-
ses. The handling, adaptation, and behavioral testing 
ensued during the lights-off period, under low light. 
The rats were subjected to three behavioral tests:

1. Object-based attention test (OBA) (17)
The Object-Based Attention test (OBA) is used to 

test attention. On the first day, the habituation phase, 
the rats were placed for 5 minutes in each of the explo-
ration and testing chambers. Then the second day, the 
acquisition phase, the rats were also kept for 5 minutes 
in each chamber: in the exploration chamber with 5 
novel wooden objects and in the testing chamber with 
2 wooden objects, one novel and one familiar. Finally, 
on the third day, the rats were familiarized with each 
chamber again for 3 minutes. The preference for the 
novel object was measured by recording the time spent 
engaged with each object (novel vs. familiar). The en-
closed area and objects were cleaned after each animal 
to prevent odor cues from interfering.  

2. Cliff avoidance reflex test (CAR) (18)
The Cliff Avoidance Reflex test (CAR) is used to 

report impulsive behavior. CAR was evaluated using a 
round wooden podium (diameter, 20 cm; thickness, 2 
cm), held up by an iron rod (height, 50 cm). The floor 
below the platform was covered with carpet to avoid 
injury to the animals in case they fell. The test started 
by gently putting a rat on the wooden podium so that 
its forelimbs were close to the verge. If the rat fell from 
the podium, it was considered to have a compromised 
CAR, the test was repeated over a course of 60 minutes 
for each rat. Rats that did not fall from podiums were 
also tested for the same period. 

3. Open-field test (19)
The open-field test is used to measure hyperactiv-

ity. An open field apparatus measuring 72 x 72 cm2 was 

constructed of white plywood with walls measuring 36 
cm high. One of the walls was clear, allowing the rats 
to be seen inside the apparatus. Blue lines were drawn 
dividing the floor into sixteen squares, each measur-
ing18 x 18 cm. In the center of the open field, an 18 x 
18 cm2 central square was created. For 5 minutes, the 
rats were allowed to explore the apparatus then they 
were sent back to their home cages after the explo-
ration period. The open field was cleansed with 70% 
ethyl alcohol and left to dry between tests. The num-
ber of lines crossed, the frequency of rearing, and the 
number of central square entries was the factor chosen 
for the measurement of the rats’ hyperactivity. Each rat 
was assigned a score based on the sum of those factors.

The sacrifice of rats and specimens, collection 

The rats were sacrificed by cervical dislocation at 
the appointed time. The blood samples were obtained 
from the tail vein. The prefrontal cortex (PFC) was dis-
sected; the PFC of one hemisphere was fixed in 4% 
paraformaldehyde and 0.1% glutaraldehyde in 0.05% 
phosphate buffer saline (PBS: pH 7.4) for histologi-
cal and immunohistochemical studies. The PFC of the 
other hemisphere was divided equally into two halves. 
One half was maintained in a flask with RNA later and 
kept at -80°C to be used for gene expression. The other 
half was kept at -20°C for homogenate preparation.

Preparation of PFC homogenates

Prefrontal cortex homogenates were weighed in 
an analytical balance after being gently marked be-
tween the folds of filter paper to prepare 10% homoge-
nate in 0.05 M phosphate buffer (pH 7) a polytron 
homogenizer was used at 4°C. For 20 minutes, the ho-
mogenates were centrifuged at 10,000 rpm to remove 
any cell debris, unbroken cells, erythrocytes, nuclei, 
and mitochondria. For further analysis, the superna-
tant was aliquoted and stored at -80 °C.

Assessments of oxidative stress and lipid peroxidation 
markers

Following the manufacturer’s instructions, levels 
of nitric oxide (NO), malondialdehyde (MDA), and 
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by labeled streptavidin-biotin (0.5 h) (DETHP1000, 
Sigma-Aldrich). Finally, we used hematoxylin as a 
counterstain and diaminobenzidine (DAB: 3 min) to 
envision the reaction. 
Quantitative measurement of area % of positive TH and 
caspase-3 immune reaction

 Four nonconsecutive scattered sections (5µm 
thick) were examined for each rat in all the groups. 
Images were captured with a light microscope (Olym-
pus model BX53, Tokyo, Japan) connected to a digital 
camera (Toup Cam model BX53, Japan) linked to a 
computer. The area fraction of immune expression of 
TH and caspase-3 was analyzed using a 40× objective 
(area: 0.071mm2). Examination of the immune-posi-
tive reaction was done using the computerized image 
analysis system Image-j (version1.48). Immune ex-
pression was visible in nearly all layers of every section 
as a distinct brownish coloration. Color deconvolution 
plugin was used to separate each image’s color content 
by measuring the brown color in immune-stained sec-
tions and the threshold was accustomed to be more 
accurate (25).

mRNA quantification by quantitative real-time PCR 
(qRT-PCR) 

Tissue sections were collected from the PFC of 
every rat in the four groups studied and homogenized 
with four strokes of liquid nitrogen. Total cellular 
RNA was isolated according to the manufacturer’s 
instructions using the QIAzol reagent (Qiagen, Ger-
many). Thermo Scientific Nano Drop 2000 (USA) was 
used to test the RNA yield for concentration using 260 
nm absorbance and purity using 260/280 and 260/230 
ratios. Reverse transcription of 1µg of RNA was done 
using Sensi FAST™ cDNA Synthesis Kit (Bioline, 
UK) by means of the following program: 10 minutes 
at 25°C for primer annealing, 15 minutes at 42°C for 
reverse transcription, and 5 minutes at 85°C for inac-
tivation on Applied Biosystems 2720 Thermal Cycler 
(Thermo Fisher Scientific, USA).

A real-time PCR instrument (Applied Biosys-
tems 7500) was used to amplify cDNA templates. The 
amplification reaction was carried out in a 20 𝜇l total
volume mixture [10 𝜇l of HERA SYBR green PCR

reduced glutathione (GSH) were detected in PFC ho-
mogenates using commercial colorimetric kits from 
the Biodiagnostic Company (Cairo, Egypt).

Assessments of inflammatory markers in the serum

Measurement of serum C-reactive protein (CRP) 
was performed using the CRP ELISA kit (ab99995; 
Abcam, Cambridge, MA) based on the method de-
scribed by Li et al. (20). Moreover, serum levels of am-
yloid protein A (SAA) were measured using Human 
SAA ELISA Kit (SAA1) (ab100635; Abcam, Cam-
bridge, MA) concurring with the modified method 
described by Chang et al. (21). 

Processing the specimens for pathological examination

PFC specimens were dehydrated in increasing 
concentrations of alcohol (70%, 95%, and 100% alco-
hol), cleaned in xylene, and permeated with two par-
affin changes (70 °C, 2 hours each). Then the tissues 
were fixed in paraffin wax and cut at 5 µm intervals. 
Finally, staining of the sections was done with Hema-
toxylin (H3136, Sigma-Aldrich) and Eosin (230,251, 
Sigma- Aldrich) (H & E) (22) for histopathological 
assessment.

Immunohistochemical determination of caspase- 3 and ty-
rosine hydroxylase

To eliminate endogenous peroxidase activity prior 
to immunohistochemical staining, prefrontal cortical 
(PFC) tissue sections were treated with 3% hydrogen 
peroxide. For antigen retrieval, the slides were rinsed 
three times in PBS (pH 7.4) and then inoculated in 
sodium citrate buffer (0.01 M, pH 6.0) for 30 min-
utes in a water bath (95 °C). The slides were inoculated 
with bovine serum albumin (BSA) (1%, 1 hour) after 
reaching room temperature, and subsequently with the 
principal antibodies (4 C, overnight): anti-caspase-3 
(ab2302, Abcam- Cambridge, UK, 1:100) (ab2302, 
Abcam- Cambridge, UK, 1:100) (23) or recombinant 
anti-tyrosine hydroxylase antibody (ab137869, Ab-
cam, Cambridge-UK, 1:200) (24). Secondary antibod-
ies conjugated with horseradish peroxidase were incu-
bated on the sections for 0.5 hours at 37 °C, followed 
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Ethical approval

This study was approved by the Institutional Re-
search Board (IRB) (Code number: R.21.03.1241.
R1.R2 - 2021/03/22), Faculty of Medicine, Mansoura 
University. All experiments were managed in accord-
ance with the National Institutes of Health (NIH) 
guide for the use and care of laboratory animals. (NIH 
Publications No. 8023, revised 1978).

Results

The findings of this study on rotenone-induced 
ADHD in rat models suggest that rosemary extract 
may have protective properties.

Histopathological assessment results

Hematoxylin and eosin-stained sections from the 
control group showed the normal appearance of the 
prefrontal cortex (PFC); the granule cells had rounded 
vesicular nuclei with prominent nucleoli and the py-
ramidal cells had vesicular nuclei and long peripheral 
processes (Figure 1). Moreover, the rosemary-treated 
group showed normal appearing granule cells and py-
ramidal cells (Figure 2A). Unsurprisingly, rotenone-
treated rat brain sections revealed shrunken neurons 
with dark basophilic cytoplasm and pyknotic nuclei. 
There were also many deeply stained neurons with py-
knotic nuclei surrounded by halos (Figure 2B). Sec-
tions obtained from rats receiving a co-administration 
of rotenone and rosemary extract restored the normal 

Master Mix (Willowfort, UK), 2 𝜇l of cDNA template,
2 l (10 pmol) gene primer, and 6 𝜇l of nuclease-free wa-
ter] using the following program: 95°C for 2 minutes, 
then 40 cycles of 10 seconds at 95°C and 30 seconds 
at 60°C. The used primer pairs’ sequences are supplied 
in (Table 1); Glyceraldehyde-3-phosphate dehydroge-
nase (GAPDH) was used as a housekeeping gene. The 
Primer 3 software (v.4.1.0) [http://primer3.ut.ee] was 
used to identify primer sets, and the Primer-BLAST 
program [https://www.ncbi.nlm.nih.gov/tools/prim-
er-blast/] was used to determine primer specificity. 
Melting curve analysis was used to examine the speci-
ficity of the PCR products, and Vivantis synthesised 
primer sets (Vivantis Technologies, Malaysia). 𝜇Ct = 
Ct target gene– Ct housekeeping gene was employed 
to represent relative gene expression levels fold change 
of gene expression was calculated using the 2−𝜇𝜇CT 
method (26).

Statistical analysis

Data analysis was done by IBM SPSS Corp. Re-
leased in 2013. IBM SPSS Statistics for Windows, 
Version 22.0. Armonk, NY: IBM Corp. Numbers and 
percentages were used to describe qualitative data. 
After testing normality with the Shapiro-Wilk test, 
quantitative data were described using both mean and 
standard deviation for parametric, or medians and 
interquartile ranges for nonparametric data. Kruskal 
Wallis test was used to compare more than 2 inde-
pendent groups with Mann Whitney U test to detect 
pair-wise comparison. The significance of the obtained 
results was judged at the (P: 0.05) level.

Table 1. The sequence of rat primers used in qRT-PCR analysis.

Gene Sequence Product length Reference sequence

Caspase 3

Forward primer:
GTGGAACTGACGATGATATGGC Reverse 

primer:
CGCAAAGTGACTGGATGAACC

135 bp NM_012922.2

Tyrosine hydroxylase (TH)

Forward primer:
GTCCGCCCGTGATTTTCTG    

Reverse primer:
AGATGCAAGTCCAATGTCCTG

184 bp NM_012740.4

Glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH)

Forward primer:
TGCCACTCAGAAGACTGTG

Reverse primer:
GGATGCAGGGATGATGTTC

85 bp NM_017008.4
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with caspase-3 antibody from both control and rose-
mary-treated groups showed weak positive caspase-3 
immunostaining in some cortical neurons (Figure 3A, 
3B). On the other hand, PFC sections from rotenone–
treated rats showed strong positive caspase-3 immu-
nostaining in most of the cortical neurons (Figure 
3C). The effect of rotenone decreased with the admin-
istration of rosemary extract exhibiting weak positive 
caspase-3 immunostaining in some cortical neurons 
(Figure 3D). 

Results of quantification of area % of positive cas-
pase-3 immune reaction in the PFC: There was a signifi-
cant rise in the area % of caspase-3 positive reaction in 
the PFC of the rotenone-treated group in comparison 
with both the control and the rosemary-treated groups. 
The reaction showed a significant decline in area % of 
caspase-3 during the administration of rosemary to the 
rotenone-treated group (P: 0.001) (Figure 3E).

The effect of rosemary extract on tyrosine hydroxy-
lase (dopaminergic marker) immunohistochemistry: PFC 
sections stained with TH from the control and rose-
mary-treated groups showed many strong positive 
fibers (Figure 4A, 4B). However, sections from the 
rotenone-treated group displayed weak positive TH 
immunostaining (Figure 4C). For the group receiv-
ing both rotenone and rosemary, there was an increase 
in TH-positive fibers in comparison to those in the 
rotenone-treated group (Figure 4D).
Results of quantification of area % of positive TH immune 
reaction in the PFC: In addition, the area % of TH-
positive reaction in PFC was significantly decreased 
in the rotenone-treated group in contrast to the rest of 
the groups, control, rosemary, rotenone + rosemary (P: 
0.001) (Figure 4E).

Behavioral assessment results

1. Object recognition test: In comparison to the 
control group, time spent exploring both novel and 
familiar objects were significantly reduced in the rote-
none group, with a significantly impaired recognition 
index. When comparing the rotenone-treated group to 
the group receiving both rotenone and rosemary; time 
exploring novel objects was statistically reduced with 
a significantly lower recognition index in the former 
group. There was no statistical difference between the 

appearance of neuronal cells, except for some neurons 
appearing deeply stained with pyknotic nuclei sur-
rounded by halos (Figure 2C).

Immunohistochemistry assessment results

The effect of rosemary extract on Caspase-3 (apop-
totic marker) immunohistochemistry: PFC Slides stained 

Figure 2. Photomicrograph of PFC sections of rats: (A): Rose-
mary-treated rats with normal appearing granule cells (arrows) 
and pyramidal cells (dotted arrows). (B) Rotenone-treated rats 
showed condensation of the cortical neurons (rectangle). There 
were many deeply stained neurons with pyknotic nuclei sur-
rounded by halos (curved arrows). (C): Combined rotenone and 
rosemary-treated rats showed restoration of PFC.  Granule cells 
(arrows) and pyramidal cells (dotted arrows) appeared normal. 
However, some deeply stained neurons with pyknotic nuclei 
surrounded by halos were still present (curved arrows) (H & 
E x 400).

Figure 1. Photomicrographs of prefrontal cortex (PFC) sections 
of control rats: (A) The PFC showed its six-layer arrangement. 
Layers are numbered from I to VI. (B) The granule cells showed 
rounded vesicular nuclei with prominent nucleoli (arrows). The 
pyramidal cells had vesicular nuclei and long peripheral pro-
cesses (dotted arrows) (H & E, A x 100, B x 400).
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+ rosemary-treated group (P: 0.05, 0.003, 0.004, re-
spectively) (Table 2).

3. Cliff avoidance test: Rats in the rotenone group 
had a significantly higher tendency to fall from the cliff 
in comparison to the controls (P: 0.003) and the group 
receiving both rotenone and rosemary (P: 0.004). 
Though those receiving rosemary had a significantly 
lower tendency to fall compared to the control (P: 
0.019) and rosemary with rotenone groups (P: 0.006).

Neurochemical assessment results

1. Rosemary’s effect on oxidative stress markers: To 
better understand the role of oxidative stress in rote-
none-induced neurodegeneration and the ameliorative 
effect of rosemary, we measured tissue levels of MDA, 

controls and the groups that received both rotenone 
and rosemary. 

2. Open field test: The rotenone + rosemary treat-
ed group showed significantly more line crossing in 
comparison to the control group (P: 0.05). On the 
contrary, the group receiving rotenone presented 
significantly reduced line crossing in comparison to 
the rest of the groups: the control group, rosemary 
group, and rotenone + rosemary treated group (P: 
0.05, 0.003, 0.004, respectively). Moreover, the group 
receiving rotenone showed significantly reduced 
central zone entries in comparison to the rosemary 
group and rotenone + rosemary treated group (P: 
0.01, 0.004, respectively). The score for total locomo-
tor activity was significantly lower in the rotenone-
treated group as opposed to the rest of the groups: 
control group, rosemary-treated group, and rotenone 

Figure 3. Photomicrographs of PFC sections of rats: (A), (B): Control and rosemary-treated rats respectively showed weak positive 
caspase-3 immunostaining in some cortical neurons (arrows). (C): Rotenone-treated rats showed strong positive caspase-3 im-
munostaining in most of the cortical neurons (arrows). (D): Combined rotenone and rosemary-treated rats showed weak positive 
caspase-3 immunostaining in some cortical neurons (arrows). (E): a: significant difference between rotenone-group and control or 
rosemary group (P value= 0.001). b: significant difference between rotenone-group and combined group (P: 0.001). There was no 
significant difference between the control and rosemary groups (Caspase-3 x 400).
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Gene expression assessment results

To further illuminate the rotenone toxicity’s mo-
lecular mechanism and rosemary’s protective effects, 
we measured the cortical caspase- 3 and tyrosine hy-
droxylase expression.

1. The effect of rosemary on cortical caspase- 3 gene 
expression: Rotenone treatment induced a significant 
increase in expression for caspase- 3 in contrast to the 
control group (P: 0.002). When compared to the ro-
tenone group, the rotenone + rosemary group had a 
significant decrease in caspase-3 expression (P: 0.003).
2. The effect of rosemary on cortical tyrosine hydroxylase 
gene expression: In addition, there is a significant de-
crease in the expression of tyrosine hydroxylase in the 

NO, and GSH. In contrast to the other groups stud-
ied, rotenone treatment showed a significant increase 
in tissue MDA and NO and a significant drop in GSH 
concentrations (P: 0.001). Nonetheless, when com-
pared to the rotenone group, the rotenone + rosemary 
group demonstrated a significant decrease in tissue 
MDA and NO concentrations as well as a significant 
increase in GSH concentrations (P:0.001).

2. The effect of rosemary on inflammatory markers: 
Rotenone-only treated rats exhibited a significant rise 
in serum amyloid protein A and CRP levels to their 
corresponding vehicle control (P: 0.003 and P: 0.003, 
respectively). Rosemary treatment significantly de-
creased serum amyloid protein A and CRP levels (P: 
0.003 and P: 0.006, respectively).

Figure 4. Photomicrographs of PFC sections of rats: (A), (B): Control and rosemary-treated rats respectively showed many strong 
positive TH-positive fibers (arrows). (C): Rotenone-treated rats showed a reduction in TH-positive fibers (arrows). (D): Combined 
rotenone and rosemary-treated rats exhibited an increase in TH-positive fibers (arrows) more than those of the rotenone-treated 
group. (E): a: significant difference between rotenone-group and control or rosemary group (P: 0.001). b: significant difference be-
tween rotenone-group and combined group (P: 0.001). There was no significant difference between the control group and rosemary 
group (TH x 400).
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rosine hydroxylase as opposed to the rotenone group 
(P: 0.003). A graphical abstract was designed to sum-
marize all results of the current study (Figure 5).

rotenone-treated group compared with the control 
group (P: 0.002). The rotenone and rosemary group 
showed a significant increase in the expression of ty-

Figure 5. Graphical abstract. Rosemary extract alleviated the cortical neurotoxicity induced by rotenone administration assessed by 
the behavioral tests, histochemical changes, oxidative stress marker (NO, MDA, GSH), inflammatory marker (CRP, SAA), dopa-
minergic marker (tyrosine hydroxylase) and the apoptotic marker (caspase -3). (ADHD) Attention deficit hyperactivity disorder, 
(I.P.) intraperitoneal, (CRP) C-reactive protein, (SAA) serum amyloid protein A, (GSH) Reduced glutathione, (NO) Nitric oxide 
and (MDA) Malondialdehyde.

Table 2. Comparison of open field test between studied groups:

Open field test Control Rosmary Rotenone Rotenone +
Rosemary

KW Within group 
significance

Line Crossing 61 (45-76) 76 (58-94) 32 (27-53) 80 (68-89) P=0.004*
P1=0.138
P2=0.05*
P3=0.05*

P4=0.003*
P5=1.000
P6=0.004*

Rearing 16 (12-20) 20 (14-25) 7 (2-16) 19 (14-21) P=0.061
P1=0.138
P2=0.05*
P3=0.623

P4=0.05
P5=1.00

P6=0.023*

Center Zone 1 (0-2) 3 (1-5) 0 (0-1) 2 (1.0-3) P=0.018*
P1=0.138
P2=0.279
P3=0.105

P4=0.01*
P5=0.802
P6=0.004*

SUM 78 (57-98) 99 (73-124) 39 (29-70) 101 (84-115) P=0.004*
P1=0.138
P2=0.05*
P3=0.05*

P4=0.003*
P5=1.00

P6=0.004*
Legend: KW: Kruskal Wallis test. * Statistically significant if p≤ 0.05. Parameters are described as median (interquartile range). P1: 
the difference between Control & Rosemary, P2: the difference between control & Rotenone, P3: the difference between control & 
Rotenone +rosemary, P4: the difference between Rosemary & Rotenone, P5: the difference between Rosemary & Rotenone +rose-
mary and P6: Rotenone & Rotenone +rosemary.
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(37,38). Rotenone exposure during the developmental 
period of rats causes hyperactivity, peaking at around 
the juvenile or adulthood period, due to dopaminergic 
lesions; the pivotal point of both behavioral phenotypes 
was found to be between three weeks and four weeks 
of age (8). Previous studies have shown that rotenone 
causes dopaminergic neurodegeneration by generat-
ing free radicals, leading to oxidative stress-mediated 
neuroinflammation, 𝜇-synuclein aggregation, impaired 
autophagy, and nigrostriatal neuron loss (39-41).

The pathophysiology of ADHD is thought to be 
associated with oxidative stress, neuroinflammation, 
mitochondrial dysfunction, and enhanced dopamine 
metabolism, as a result, excessive hydrogen oxide and 
other reactive oxygen species (ROS) are produced. In 
ADHD, oxidative stress is alleged to have an impor-
tant role in the degeneration of neurons and the death 
of substantia nigra cells (42-44).

Complementary results from our biochemical 
analyses showed that lipid peroxidation markers MDA 
and NO were increasing and GSH was decreasing in 
the rotenone-treated group, which is in agreement 
with other studies (45-48). In light of our observa-
tions, high levels of MDA have been reported in chil-
dren with ADHD (49,50). As well as high levels of 
NO were observed in ADHD patients (49, 51, 52). 
There were statistically lower levels of GSH in patients 
with ADHD in comparison to the normal population 
(50,53). On the contrary, Varol et al. (54)  found that 
patients with ADHD had lower levels of blood nitric 
oxide; in addition to other studies that revealed statis-
tically lower levels of MDA in children with ADHD 
compared to the normal population (55, 56). 

Rotenone decreases the activity of mitochondrial 
complex I, resulting in an increase in ROS and per-
oxynitrite. ROS and peroxynitrite production causes 
damage to all cell components, including mitochon-
drial membrane structure, proteins, lipids, and, DNA 
resulting in neuronal death (57-59). Rosemary has 
been found to help protect cells from the harmful ef-
fects of ROS by decreasing oxidative stress and neuro-
inflammatory response and acting as an anti-apoptotic 
agent. We reported that rosemary has antioxidant ac-
tion on prefrontal cortical tissues by lowering MDA 
and NO levels as well as limiting the decrease in GSH 
in the rotenone model of ADHD. This study was in 

Discussion

This study was designed to establish an experi-
mental model of ADHD in juvenile rats using ro-
tenone and assess rosemary leaf extract’s potential 
neuroprotective effects. The results obtained from the 
present study were of particular interest as they pro-
vided clear evidence of the protective and preventative 
potentials of rosemary leaf extract against neurotoxic 
effects associated with rotenone exposure in juvenile 
rats.

ADHD is a childhood-onset neurodevelopmental 
disorder that is associated with a broad range of mental 
disorders, including affective disorders, antisocial per-
sonality, and self-harm (27,28). Unfortunately, current 
ADHD treatments cannot alter the pathological fea-
tures and fix the underlying cause of the disorder, but 
are just used for symptomatic relief and to alleviate the 
symptoms associated with the disorder. Since current 
treatments are noticeably inadequate, an alternative 
approach focusing on the use of phytochemicals that 
can offer neuroprotection through their anti-oxidative 
and anti-apoptotic activities is being investigated as a 
potential new strategy for the treatment of ADHD. 
Rosemary leaf extract is a natural neuroprotective 
substance, capable of crossing the blood-brain barrier, 
that acts by decreasing lipid peroxidation and hydroxyl 
anion radical and hydrogen peroxide activities in rat 
brain tissues (29,30). 

Rosemary as a traditional herb has neurophar-
macological properties in addition to significant an-
timicrobial, antioxidant, anti-inflammatory, and anti-
apoptotic properties. Furthermore, it shows essential 
clinical effects on mood, memory, learning pain, sleep, 
and anxiety (31, 32). Moreover, rosemary and its phe-
nolic derivatives increase antioxidant enzyme activity, 
thus reducing free radical formation. This has been a 
point of interest to researche rs as a possible protective 
measure in diseases involving oxidative stress (33-35). 

Besides rosemary essential oil has been shown to im-
prove mood and cognition in healthy adults (36).

Rotenone, a common insecticide, is a mitochon-
drial complex I inhibitor generated from plants. It is 
lipophilic in nature and thus crosses biological mem-
branes easily. Rotenone is a dopaminergic toxin and 
is capable of causing Parkinson’s disease in adult rats 
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tochondrial cytochrome c to the cytosol, activating the 
caspase-3 cascade, and thus resulting in apoptotic cell 
death (77-79). The rosemary-treated group had very 
little caspase-3 positive cell expression, indicating that 
the extract inhibits rotenone-induced neurodegenera-
tion, possibly by interfering with caspase-3 activation.

Neurochemical alterations involving dopamine 
have been considered to play a critical role in the patho-
physiology of ADHD as well as tyrosine hydroxylase 
(TH) which is regarded as the rate-limiting enzyme in 
the biosynthesis of dopamine (80). Several studies have 
found that patients with ADHD have lower levels of 
dopamine activity (81,82). The results of this experi-
ment revealed many strong positive TH-positive fibers 
in the control group through cortical layers by immu-
nohistochemical staining, and there was a decrease in 
TH-positive nerve fibers in the rotenone groups. This 
result was confirmed by earlier studies that reported a 
decrease in TH expression in the substantia nigra, stri-
atum, and hippocampus in ADHD model rats treated 
with rotenone (83-85). These findings are due to dopa-
minergic neuro- degeneration caused by mitochondri-
al electron transport chain inhibition and nigrostriatal 
degeneration, as well as a decrease in GSH generation, 
which acts as a protective agent for dopaminergic cells 
(86). Low levels of dopamine storage in the mPFC of 
ADHD patients compared with healthy subjects sug-
gest that their dopamine system is not working prop-
erly. Immunostaining for tyrosine hydroxylase in PFC 
indicated that treatment with rosemary prevented the 
loss of TH-immunoreactivity caused by rotenone. In 
accordance, other studies reported that carnosol, the 
major oxidation product of carnosic acid, significantly 
increased the amount of tyrosine hydroxylase due to 
its antioxidative and anti-apoptotic properties (87,88). 
Many compounds that possess neuroprotective effects 
have been shown to prevent the loss of dopaminergic 
neurons and TH-positive cells caused by dopaminer-
gic neurotoxins (89-91). 

In this model, we demonstrated the typical pres-
entation of ADHD in the form of impulsivity and 
inattention in the juvenile rats (4-week-old rats; ap-
proximately equivalent to 6–8-year-old children) (92) 
, induced by repeated exposure to small doses of rote-
none during the neonatal period. In contrast to the ex-
pected, we found that this exposure produced a marked 

accordance with other studies that revealed that rose-
mary leaf extract possesses antioxidant effects (60-62).

Additionally, our study showed that CRP levels 
were higher in the rats exposed to rotenone, whereas 
they were lower in the rosemary-treated rats. In con-
cordance, one study has reported an increase in CRP 
in children with ADHD (63). While another study 
found no association between ADHD and non-AD-
HD CRP samples (64). Chudal et al. (65) showed 
that maternal CRP during early pregnancy had no 
significant association with offspring diagnosed with 
ADHD.

Both prefrontal association cortices, of the two 
hemispheres, play an important role in regulating be-
havior, attention, and emotion; moreover, the cortex 
of the right hemisphere is specialized in behavioral 
inhibition. The PFC is more susceptible to rotenone 
toxicity because some studies have found that there is 
reduced blood flow and metabolic activity in the pre-
frontal cortex of ADHD patients. Moreover, impaired 
function and structure of the prefrontal cortex circuits 
are associated with poor cognitive function (66,67). 

The histological findings in the present study showed 
that rosemary leaf extract protected PFC as well as 
cortical neurons against rotenone-induced neuronal 
degeneration and apoptosis. These findings support 
the results of previous studies that have shown that 
administering rotenone can produce neurotoxicity in 
the striatum and prefrontal cortex (68,69). Lee et al. 
(70) reported that rosemary extract has an antioxidant 
effect on dopaminergic neurons and believes that rose-
marinic acid, a component of rosemary leaf extract, 
plays a neuroprotective role on neuronal tissues.

Caspase-3, the active form of procaspase-3, is the 
enzyme most commonly implicated in neuronal apop-
tosis. Caspases can regulate apoptotic neuronal death 
as well as inflammation in the central nervous system. 
Also, It can mediate synaptic depression in other brain 
regions and/or regulate attentional processes in re-
sponse to different demands (71-73). Based on the im-
munohistochemical staining Caspase 3 activity rose in 
the PFC of rats treated with rotenone, and apoptotic 
cells expanded and spread throughout the cortical lay-
ers. Those findings are in concordance with other stud-
ies (74-76). It is generally believed that rotenone in-
toxication results in the production and release of mi-
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juvinail rats. These assertions were supported by sig-
nificant improvements in attention and impulsivity, 
as well as a reduction in oxidative stress and preserva-
tion against dopaminergic neuron death, demonstrat-
ing that rosemary has a neuroprotective impact in the 
model of rotenone-induced ADHD.

Limitations of the study

To fully understand how rosemary extract affects 
Attention Deficit Hyperactivity Disease in various ex-
perimental circumstances, more researches are neces-
sary.
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