Volume of distribution as an early predictor of vancomycininduced AKI in critically ill patients

Parisa Ghasemiyeh^{1,2}, Afsaneh Vazin¹, Farid Zand³, and Soliman Mohammadi-Samani^{2,4}

¹Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; ²Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; ³Anesthesiology and Critical Care Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran; ⁴Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran;

To the Editor,

In our previous study, we focused on vancomycin pharmacokinetic in critically ill patients and vancomycin-induced acute kidney injury (AKI) (1). Now, we have new findings regarding the key role of volume of distribution (V_d) in AKI prediction in this group. The changes in vancomycin pharmacokinetic parameters would be expectable in special groups of patients (2). V_d can be calculated through different equations. Eq. 1-3 are based on individualized data obtained from blood sampling and pharmacokinetic analysis (3), while, Eq. 4 is based on data extracted from the population pharmacokinetic (4). V_d can be calculated individually either based on the k values (slope of LnC *vs.* time curve) (Eq. 1 and 2) or independent of k (Eq. 3) (5).

$$V_d(1) = \frac{Cl}{k} \tag{Eq. 1}$$

$$V_d(2) = \frac{k_0(1 - e^{-kt})}{Ck}$$
 (Eq. 2)

$$V_d(3) = \frac{Dose}{C_{max} - C_{min}}$$
(Eq. 3)

$$V_d(4) = 0.72 \frac{L}{kg} if \ eGFR \ge 60$$

$$(Eq. 4)$$

$$V_d(4) = 0.9 \frac{L}{kg} if \ eGFR < 60$$

While Cl is clearance (L/h), k is elimination constant (h⁻¹), k_0 is the rate of drug infusion (mg/h), C is the vancomycin concentration after the end of infusion time (mg/L), *Dose* is the administered drug (mg), C_{max} and C_{min} are the steady-state peak and trough concentrations, respectively, and *eGFR* is the estimated glomerular filtration rate (ml/min/1.73m²) (4).

The results of V_d values calculated through the aforementioned equations in the AKI and non-AKI groups are presented in Table 1. V_d values derived from individualized pharmacokinetic assessments (V_d 1, 2, 3) were much lower in the AKI group, while, for V_d 4, the trend was reversed. Therefore, it seems that V_d calculation based on the population data would not be a suitable surrogate for individualized assessment of V_d .

In order to assess the V_d cut-off points to predict vancomycin-induced AKI, receiver operating characteristic (ROC) curve was utilized. Cut-off points, area under the ROC curves (AUCs), sensitivity, and specificity in AKI prediction are summarized in Table 1 and Figure S1. According to the results, the individualized V_d (V_d 1, 2, 3) values could significantly predict vancomycin-induced AKI with adequate sensitivity, specificity, and AUCs. Therefore, V_d values smaller than the cut-off points could lead to vancomycin-induced AKI. However, the V_d values obtained from the population data (V_d 4) showed a reverse trend and also failed to significantly predict AKI occurrence.

Therefore, according to the results of the present study, it seems that the reduced V_d value would be a promising early predictor of vancomycin-induced

Volume of distribution (V _d)	V _d in AKI group (Mean±SD)	V _d in Non-AKI group (Mean±SD)	Cut-off points for AKI	P-value	Area under the ROC curve (AUC)	Sensitivity (%)	Specificity (%)
V _d (1)	65.77±47.51 L	162.97±211.25 L	≤50.96 L	0.049	0.692	55.56	77.14
V _d (2)	23.27±12.80 L	52.87±34.38 L	≤30.27 L	<0.001	0.829	77.78	80.00
V _d (3)	66.15±46.38 L	149.43±164.40 L	≤83.06 L	0.012	0.733	88.89	56.76
V _d (4)	53.27±9.42 L	48.16±8.39 L	>51.12 L	0.059	0.708	66.67	79.55

Table 1. Comparison of calculated volume of distribution (V_d) values in AKI and non-AKI groups (N=53).

AKI. These reduced V_d values can be attributed to the enhanced concentration changes (C_{max} - C_{min}) based on Eq. 3. Also, there are some other biological determining parameters that influence V_d values in patients susceptible to AKI that would be genetically governed in this group of patients, although to date there is not any published data. Interestingly, these results for V_d in patients who developed to AKI were completely different from those with chronic kidney disease (CKD) who have increased V_d values due to the enhanced total body water, hypoalbuminemia, and decreased protein binding (6). In this regard, we proposed early assessment of V_d in vancomycin receiving patients to predict the possible AKI development.

Conflicts of Interest: Each author declares that he or she has no commercial associations (e.g. consultancies, stock ownership, equity interest, patent/licensing arrangement etc.) that might pose a conflict of interest in connection with the submitted article.

Ethics Statement: This study was reviewed and approved by the Ethics Committee of Shiraz University of Medical Sciences, Shiraz, Iran. (Approval ID No.: IR.SUMS.REC.1398.605). The patients/participants provided their written informed consent to participate in this study.

Acknowledgments: This study was a part of the Ph.D. thesis of Dr. Parisa Ghasemiyeh and was financially supported by the Vice-Chancellor for Research of Shiraz University of Medical Sciences [Grant No. 97-01-36–19208]. We also appreciate Iran's National Elites Foundation for their support.

Author Contributions Statement: Parisa Ghasemiyeh: Data curation, methodology, software, formal analysis, validation, investigation, writing-original draft preparation, review and editing; Afsaneh Vazin: Methodology, supervision, investigation, writing-review and editing; Farid Zand: Methodology, supervision, investigation, writing-review and editing; Soliman Mohammadi-Samani: Conceptualization, supervision, methodology, validation, formal analysis, investigation, project administration, writing-original draft preparation, review and editing.

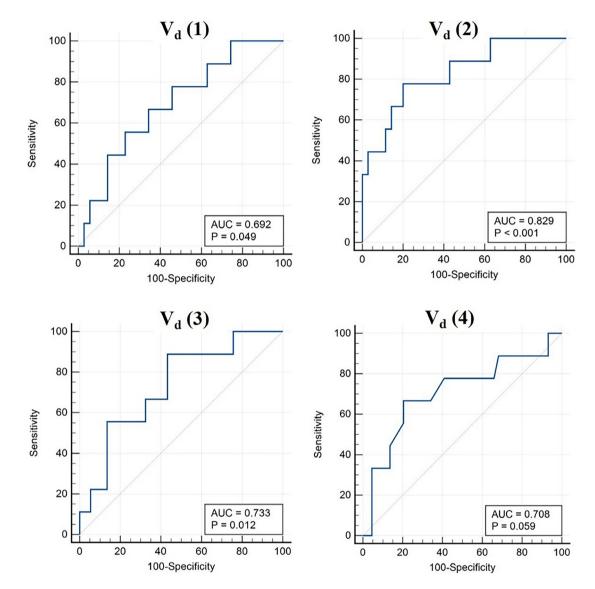
References

- 1. Ghasemiyeh P, Vazin A, Zand F, et al. Pharmacokinetic assessment of vancomycin in critically ill patients and nephrotoxicity prediction using individualized pharmacokinetic parameters. Front Pharmacol. 2022 Aug 24;13: 1-14. doi: 10.3389/fphar.2022.912202.
- Ghasemiyeh P, Vazin A, and Mohammadi-Samani S. A brief review of pharmacokinetic assessments of vancomycin in special groups of patients with altered pharmacokinetic parameters. Curr Drug Saf. 2023 Nov 1;18(4):425-439. doi: 10.2174/1574886317666220801124718.
- Gibaldi M and Perrier D. Apparent volume of distribution. In: Pharmacokinetics. New York: Wiley Online Library; 2007. p. 199-208.
- Beringer P. Vancomycin. In: Winter's Basic Clinical Pharmacokinetics. Philadelphia: Wolters Kluwer; 2018. p. 467-496.
- Coté CJ, Lerman J, and Anderson BJ. Pharmacokinetics and Pharmacology of Drugs Used in Children. In: A Practice of Anesthesia for Infants and Children. Auckland, New Zealand: Elsevier; 2018. p. 482-485.
- Vondracek SF, Teitelbaum I, and Kiser TH. Principles of kidney pharmacotherapy for the nephrologist: Core curriculum 2021. Am J Kidney Dis. 2021;78(3):442-458. doi: 10.1053/j.ajkd.2021.02.342.

Correspondence:

Received: 12 January 2023

Accepted: 13 March 2023


Soliman Mohammadi-Samani, Pharm.D., Ph.D.,

Professor of Pharmaceutics

School of Pharmacy, Shiraz-Marvdasht Hwy, Karafarin St,

Shiraz, Fars Province 71468 64685, Iran

Email: smsamani@sums.ac.ir

Appendix – Supplementary file

Figure S1. The area under the ROC curves of the volume of distributions (V_d (1), V_d (2), V_d (3), and V_d (4)) in the prediction of vancomycin-induced AKI.