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Abstract. Background and aim: Artificial intelligence was born to allow computers to learn and control their 
environment, trying to imitate the human brain structure by simulating its biological evolution. Artificial 
intelligence makes it possible to analyze large amounts of data (big data) in real-time, providing forecasts that 
can support the clinician’s decisions. This scenario can include diagnosis, prognosis, and treatment in anesthe-
siology, intensive care medicine, and pain medicine. Machine Learning is a subcategory of AI. It is based on 
algorithms trained for decisions making that automatically learn and recognize patterns from data. This article 
aims to offer an overview of the potential application of AI in anesthesiology and analyzes the operating prin-
ciples of machine learning Every Machine Learning pathway starts from task definition and ends in model 
application. Conclusions: High-performance characteristics and strict quality controls are needed during its 
progress. During this process, different measures can be identified (pre-processing, exploratory data analysis, 
model selection, model processing and evaluation). For inexperienced operators, the process can be facilitated 
by ad hoc tools for data engineering, machine learning, and analytics. (www.actabiomedica.it)
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1 Introduction

1.1 Brief overview

Artificial intelligence (AI) was born to allow 
computers to learn and control their environment, 
trying to imitate the human brain structure by simu-
lating its biological evolution (1). According to John 
 McCarthy AI is “the science and engineering of mak-
ing intelligent machines, especially intelligent com-
puter programs. It is related to the similar task of using 
computers to understand human intelligence, but AI 
does not have to confine itself to methods that are bio-
logically observable” (2). This article aims to analyze 
the operating principles of artificial intelligence and 

identify fundamental steps for the implementation of 
machine learning algorithms.

2 Background

2.1 Artificial intelligence history

The history of AI has now become a long one. 
Its birth coincides with the publication of the ques-
tion “Can machines think?”. In fact, this phrase used 
by Alan Turing in the imitation game is considered the 
beginning of AI (3). On the other hand, the term owes 
its partnership to John McCarthy, a computer scientist 
who, in 1956, organized the Dartmouth conference in 
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which the term was officially coined. The initial en-
thusiasm was followed by the so-called “AI winter”; 
a period identified from the 1970s to the 1990s, in 
which problems related to the capabilities of the avail-
able instrumentation have created an abrupt halt (4). 
Later, thanks to technological advancement, starting 
from the 2010s, AI is having a new renaissance. And 
in this new “AI spring”, AI in Medicine (AIM) had no 
exceptions. This was also possible thanks to the wide-
spread health data digitalization, which made it pos-
sible to create big data systems capable of providing a 
solid basis for intelligent algorithms. Borges do Nas-
cimento et al., analyzing the impact of big data analy-
sis on health indicators and core priorities described 
in the World Health Organization (WHO) General 
Program of Work 2019/2023 and in the European 
Program of Work (EPW). The article highlighted how 
the accuracy and management of some chronic dis-
eases can be improved by supporting real-time analysis 
for diagnostic and predictive purposes (5) (Figure 1).

2.2 Subtypes of artificial intelligence

AI includes various subtypes, among others: ma-
chine learning (ML), Computer Vision (CV), Fuzzy 
Logic (FL), and Natural Language Processing (NLP). 

ML is based on algorithms trained for decisions mak-
ing that learn from the analyzed data. ML algorithms 
can be classified based on the type of feedback re-
ceived. First is supervised learning which receives 
pre-catalogued data as input. Another category is un-
supervised learning. The difference with the previous 
one is that the training data is not catalogued, and the 
system must recognize and label the same type of data. 
In semi-supervised learning, a combination of the two 
previous algorithms is performed. In this way, the sys-
tem must consider both the tagged and the untagged 
elements. Another type of ML is represented by rein-
forcement learning which can learn from its successes 
and mistakes. Instead, deep learning (DL) is a sub-
group of ML based on algorithms that use artificial 
neural networks (ANN) organized in several layers 
to imitate how the human brain interprets and draws 
conclusions from information. DL is characterized by 
multiple hidden node layers that learn representations 
of data by abstracting it in many ways. CV is the branch 
of AI that allows computers to recognize an image and 
distinguish the individual elements of a picture by as-
signing them meaning. Instead, FL uses non-binary 
values to solve problems that require dealing with 
more values that classical logic cannot solve. Finally, 
NLP is a subtype of AI that tries to understand natural 
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Figure 1. Timeline diagram showing the history of artificial intelligence.
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language to communicate between machines and with 
humans (6, 7) (figure 2).

2.2.1 The concept of data model

It has been considered a crucial point in super-
vised machine learning sincethe advent of DL in re-
cent years. ML systems were not able to process data 
directly. It was almost always necessary to define pa-
rameters related to the human capabilities of repre-
senting the real world as numbers and codes for any 
specific problem in which the system had to learn from 
data to support decisions. This process was termed 
feature extraction and, in some way, the human could 
determine the success of the process by choosing the 
better feature set. Moreover, the process of feature ex-
traction was slow and costly, as features in many cases 
were manually determined, and the amount of labelled 

data was always limited compared to what we can do 
nowadays in the big data era. DL has revolutionized 
this view: the necessity of managing the amounts of 
data of unimaginable size, the exponential increase of 
the hardware computational power, and the arrival on 
the scene of DL models such as BERT, Long-Short 
Term Memory (LSTM) models provided the AI de-
signers with tools where features models importance 
is limited to the final stage of decision making: the 
fine-tuning of DL systems.

2.3 Artificial intelligence in medicine

AI has a major role in numerous sectors, from 
the financial industry to manufacturing. It also rep-
resents an essential part of our daily life. In particu-
lar, every time we are surfing the net, we scroll down 
the home page of our social networks, every time we 
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monitoring their physiological parameters while mini-
mizing person-to-person contact and ensure proper 
cleaning and sterilization (13).

2.3.5 Artificial intelligence and SARS-CoV-2

The most recent application of AI in healthcare 
was during the pandemic of SARS-CoV-2, where it 
was used to improve diagnosis (14-16), to predict the 
epidemic trend (17,18), to predict patients at risk for 
more severe illness on initial presentation (19), and for 
faster drugs repurposing (20-24).

2.4 Artificial intelligence in intensive care medicine

With continuous patient monitoring and the 
enormous amount of data generated, intensive care 
units (ICU) represent the ideal field for the develop-
ment and application of AI. Among the possible uses, 
some algorithms are able to predict the length of stay 
in ICU (25,26). Moreover, when a neural network al-
gorithm was applied to the Medical Information Mart 
for Intensive Care III (MIMIC-III) database, ML 
was able to predict the risk of ICU readmission and 
mortality, outperforming standard scoring systems, 
such as sequential organ failure assessment (SOFA), 
APACHE-II, and Simplified Acute Physiology Score 
(SAPS) (27-29). An algorithm based on logistic re-
gression and random forest models was able to predict 
patient instability in the ICU by measuring tachycar-
dia on an electrocardiogram (30). Furthermore, an AI 
system commercialized as Better Care® can identify 
ineffective efforts during mechanical ventilation by 
acquiring, recording and analyzing data directly at pa-
tient’s bedside (31). Similar algorithms were even able 
to detect two types of asynchronies associated with 
flow asynchrony, dynamic hyperinflation, and double 
triggering (32,33). Moreover, Komorowski and col-
leagues developed a computational model using of 
reinforcement learning which is able to suggest the 
optimal fluid and vasopressor therapy in septic patients 
in ICUs, with a significant reduction in mortality (34). 
Finally, deep learning (DL) was used in ICU to assess 
delirium and agitation by continuously monitoring 
patient emotions, employing a camera and accelerom-
eters to record facial expressions and movements (35).

use a smartphone or a smartwatch, we travel with a 
self-driving vehicle or simply every time we check our 
spam free e-mail, we are actually using AI (8).

2.3.1 Artificial intelligence in diseases 
diagnosis

AI is used in disease diagnosis. For example, Esteva 
and colleagues trained a deep convolutional neural net-
work (CNN) using a dataset of 129,450 dermatological 
images and tested its performance against 21 dermatol-
ogists. Results showed that artificial intelligence is capa-
ble of classifying skin lesions with a level of competence 
comparable to dermatologists (9). AI can help in the 
early detection of lung nodules in thoracic imaging. It 
may also aid in characterizing liver lesions as benign or 
malignant in patients undergoing computed tomogra-
phy (CT) and magnetic resonance imaging (MRI) (10).

2.3.2 Artificial intelligence in pre- intra- and 
post-operative settings

Ren et al. demonstrated that AI applied to a mo-
bile device was able to predict postoperative compli-
cations with high sensibility and specificity, matching 
surgeons’ predictive accuracy (11). ML is also used 
successfully in airways evaluation for predicting in-
traoperative hypotension, ultrasound (US) anatomical 
structure detection, managing postoperative pain, and 
drug delivery (7).

2.3.3 Artificial intelligence in pharmaceutical 
industry

AI systems were also implemented in pharmaceu-
tical industry, where DL helps to discover new drugs 
and to predict bioavailability at the benchIn this con-
text, AI is able to predict 3D structure of target pro-
tein, predict drug-protein interactions, determine drug 
activity, predict toxicity, bioactivity and can identify 
target cells (12).

2.3.4 Artificial intelligence assistants

AI assistants are promising robots with the abil-
ity to support patients, elderly and disabled people, 
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High-performance characteristics and strict quality 
controls are needed.

The whole process can be summarized into four 
steps, as follows: (Figure 3)

 - Pre-processing
 - Exploratory Data Analysis (EDA)
 - Model selection
 - Model processing and evaluation

3 Pipeline

3.1 Pre-processing
After task definition and data collection, the 

pre-processing, or data preparation process, is imple-
mented. This mandatory step is aimed at ensuring that 

2.5 Basic principles of functioning of Machine Learning

ML systems aim to generalize the results (predic-
tions) in a particular scenario. This scenario can include 
diagnosis, prognosis, and treatment in intensive care 
medicine. Pattern recognition, extrapolation, and elab-
oration strategies can enhance the decision-making 
process and potentially lead to relevant improvements 
in clinical care (36).

Although the operating mechanisms are highly 
complex, a scheme for approaching the matter can 
be drawn. Every ML pathway starts from task defini-
tion and ends in the model application. By connect-
ing the two extremes, different steps can be identified. 
Nevertheless, the system is not static. It can dynami-
cally develop during the different stages of its pro-
gress, depending on potential issues to be addressed. 

Figure 3. Schematic Machine Learning pathway. Abbreviation: SVM, Support Vector Machine; RVM, Relevance Vector Machine; 
K-NN, K-nearest neighbors.
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Practically, EDA involves the analysis of the 
features through statistical summary and visual tech-
niques such as histograms, scatter charts and other 
tools. According to the research to be performed, four 
types of EDA are described:

 - Univariate nongraphical. Valid for a single 
variable.

 - Univariate graphical. It includes stem-and-leaf 
plots, histograms, and box plots.

 - Multivariate nongraphical. Adopted for high-
lighting the relationship between two or more 
variables (cross-tabulation or statistics).

 - Multivariate graphical. Graphics (e.g., bar 
chart, scatter plot, bubble chart, and heat 
map) can illustrate links between two or more 
data sets.

Software for an automated EDA in a univariate 
or bivariate manner is available (e.g., AutoEDA from 
XanderHorn). Furthermore, the programming lan-
guages Python and R are commonly used for EDA 
purposes.

3.3 Model selection

Model selection and optimization (or training) 
are vital steps for selecting a hypothesis that will ef-
ficiently fit future examples. Available training mod-
els have evolved in various increasingly complex and 
sophisticated algorithms. Therefore, identifying the 

the algorithm will easily interpret the dataset features. 
It includes data loading, normalization, and standardi-
zation of the dataset. Several procedures can be pro-
vided, but not all are always required (Table 1).

Since outputs are strictly dependent on the data 
provided and AI-based predictions may influence 
clinical decisions, structuring and manipulating the 
pre-processing dataset must be remarkably accurate. 
At this critical stage, clinicians must work closely with 
bioinformaticians to avoid generating models that, al-
though mathematically optimal, do not fit the clinical 
contexts in which they will operate (37).

3.2 Exploratory Data Analysis (EDA)

This phase aims to discover trends or patterns 
and is dynamically linked to the previous step. It is a 
crucial element of the whole process as most of the 
time is spent in feature engineering and pre-processing 
instead of model development and deployment. Data 
scientists implement EDA to analyze datasets and 
summarize their main characteristics, often adopting 
data visualization methods. It helps determine the op-
timal way to manipulate data, allowing researchers to 
detect patterns, potential anomalies, and test one or 
more hypotheses. In other words, this step is primar-
ily used to evaluate what data can reveal beyond the 
formal modelling or hypothesis testing and provides a 
better understanding of dataset variables and their in-
terrelationships. It can also help determine if the statis-
tical techniques used for data analysis are appropriate.

Table 1. Data Preparation examples.

Procedure Process

Data Quality 
Assessment

It encompasses the analysis of missing values (e.g., raw elimination or estimation by interpolation 
methods), alongside inconsistent and duplicate values.

Feature Aggregation This step is crucial for large amounts of data. Rows from multiple tables are combined through aggregators 
that perform calculations of sums, averages, medians, and the number of rows. It also combines data from 
different tables.

Feature Sampling In some cases, it may be necessary to use only a portion of the dataset due to memory or time constraints. 
Nevertheless, the sample should represent the original (balanced dataset) dataset Sampling techniques 
include sampling with or without replacement and stratified sampling.

Dimensionality 
Reduction

Irrelevant features and noise can be eliminated to increase the dataset viewing. The most used methods are 
Principal Component Analysis and Singular Value Decomposition.

Feature Encoding It is the transformation of the dataset to allow the input of machine learning algorithms while maintaining 
its original meaning. Different norms and rules for continuous or numeric variables are followed.
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Markov decision process reinforcement algorithm 
to identify patient-tailored strategies for managing 
hypotension in sepsis. Finally, Q learning is another 
Reinforcement learning algorithm mainly used in 
cognitive science (49), principally for memory inves-
tigations (50).

A selection of ML algorithms for medical re-
search purposes is described in Table 2.

3.3.1 Model selection and Algorithms in 
Artificial Neural Networks

The schematic model of ML pathways is difficult 
to adopt when in-depth analyses must be carried out. 
It usually occurs when composite scenarios (and mul-
ticomponent data) are encountered in medical inves-
tigations. In these circumstances, ANN architectures 
can be implemented. Concerning their functioning, 
the “machine” autonomously manages to classify the 
data and structures them hierarchically, finding the 
most relevant and useful ones. The system improves 
its performance with continuous learning and data 
processing (knowledge). Because of these properties, 
the machine learns and improves even more complex 
functions.

In this context, the proper selection of variables is 
challenging, and the EDA stage cannot be performed. 
Thus, it is often necessary to manage a more simplified 
dataset by saving the original information as much as 
possible, allowing a more feasible pattern recognition.

Depending on the complexity of the investigated 
data, the pre-processing phase can take place differ-
ently. Factor Analysis can be adopted to reduce the 
sample size and, where necessary, to find macro vari-
ables such as comorbidities, risk factors, etc. Alterna-
tively, a fully automatic Random Forest method can be 
used to select the covariates and explain the classifica-
tion. Finally, based on one of the two paths, the ANN 
model (mainly the hidden layers) is chosen (Figure 4).

Concerning algorithms, they have a fascinating 
functioning mechanism that mimics specific processes 
of brain functioning. Convolutional Neural Networks, 
for example, are biologically inspired by the retina. 
Furthermore, the backpropagation algorithm per-
forms a “tuning” of the weights (of the previous layers) 
and develops a network process that allows the neural 

best model is a complicated and iterative procedure. In 
this stage, one or more algorithms are identified and 
implemented.

ML algorithms are elements of code that can be 
used to explore, analyze, and find meaning in complex 
datasets. By simplifying, each algorithm is a finite set 
of detailed instructions and analyzes data by following 
a concrete pathway. Algorithms are often grouped ac-
cording to the ML techniques used (i.e., Supervised 
Learning, Unsupervised Learning, and Reinforcement 
Learning).

Although the ideal model does not exist, striving 
for the “most appropriate model” for both data and 
the context in which it will operate is necessary. Ac-
cordingly, clinicians should develop a dialogue with 
researchers in bioinformatics to ensure the appropriate 
choice of method(s).

The supervised Support Vector Machine (SVM) 
is one of medicine’s most used ML algorithms. For 
instance, it has been used for cancer genomics (38), 
biomarkers selection in Alzheimer’s Disease (39), 
and in classifying EEG signals (40). In anesthesia 
research, this algorithm was adopted to study the 
anesthesia awareness phenomenon (41), to classify 
ultrasound image features (42), and for a vast number 
of purposes (43).

Regarding other algorithms, Fakherpour et al. 
(44) implemented the Multinomial Logistic Regres-
sion to evaluate spinal anesthesia’s hemodynamic 
effects in elective cesarean section. In contrast, rein-
forcement learning algorithms were used to develop a 
closed-loop anesthesia method based on mean arterial 
pressure and bispectral index (BIS) data (45). Fur-
thermore, the Decision Tree was chosen to predict the 
efficacy of patient-controlled analgesia (46), and the 
Fuzzy unsupervised logic is a critical element of EEG 
signal processing (47).

Several algorithms have been used to optimize 
decision processes for patient treatments. Reinforce-
ment learning algorithms are used for addressing se-
quential decision problems. These algorithms could be 
of paramount importance in intensive care medicine, 
especially when combined with deep learning (e.g., 
Convolutional Neural Network) (48). For example, 
starting from two large ICU databases (MIMIC-III 
and Philips eRI), Komorowski et al. (34) adopted the 
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and have a broad application in the field of bioinfor-
matics (54,55).

The most used algorithms are shown in Table 3.

3.3.2 Libraries

The various algorithms can be grouped into pack-
ages (libraries). Scikit-learn, for instance, is one of the 

network to improve its performance progressively. It 
resembles most of the cognitive processes!

These algorithms are widely used in medical re-
search, even in anesthesia and pain medicine. For 
instance, they recognize the EEG patterns and the 
analysis of linguistic and visual elements in pain study-
ing (51). Moreover, they are of paramount importance 
for imaging investigation (52), brain monitoring (53), 

Table 2. The most used algorithms of machine learning in medical research. Abbreviations: BIRCH, balanced iterative reducing and 
clustering using hierarchies.

Algorithm Brief Description

Supervised

Support Vector Machine (SVM) It divides the learning data into classes, enlarging the distance from all points. Used for 
both classification and regression problems.

Linear Regression Allow estimating the value of a variable that depends on many others.

Multinomial Logistic Regression 
(MLR)

Classification approach that generalizes logistic regression (a binary regression model that 
uses the logistic function to model the binary dependence) with a multiclass task. It can be 
viewed as the modality of assignment to a definite class, adopting the one that ensures the 
best probability.

Bayesian networks (BN) Graphic model indicates a probability distribution in a set of arbitrary variables. The 
algorithm encompasses a probability distribution of the variables and a graph illustrating the 
dependencies between variables.

K-nearest neighbors (kNN) It classifies a point based on the known classification of other points (votes of the closest k 
neighbors).

Restricted Boltzmann machine 
(RBM)

Graphic model with proportional reciprocity between observable and hidden variables. 
Links between elements of the same layer are not permitted to facilitate the learning 
mechanism.

Relevance vector machine (RVM) 
and Gaussian process (GP)

Bayesian extensions of the SVM algorithm. The assessment is provided on the probability 
of being included in a class.

Decision Tree (DT) Graphic model (rule-based model) shows the decision points as branching and the 
applicable prediction in terms of end-nodes or leaves.

Unsupervised

Fuzzy C Means Flat/Partitioning-based algorithm that assigns elements to each data point related to each 
cluster center. It is established on the distance between the the cluster’s center and the  
data point.

BIRCH A hierarchical-based algorithm that works over large data sets, requiring a single  
database scan.

K-means Clustering algorithm splits a set of points (with no external classification) into K sets 
(clusters). The points in a cluster are disposed near each other. It is one of the various 
possible methods for solving the k-NN problem.

Reinforcement algorithms

Markov decision process It dissects the environment (where the learner, or agent, interacts) as a grid by dividing it 
into states, actions, models/transition models, and rewards. The solution is a policy (rewards 
combinations) and the objective is to find the optimal approach.

Q learning The value-based approach of supplying information to inform which action an agent 
should take.
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Figure 4. Two examples of Model Selection for artificial neural networks in medical investigations. Random Forest can help the 
screening of the covariates for the classification model (A). Factor analysis can be adopted to select macro variables (B).

Table 3. Most used algorithms of deep learning in medical research.

Algorithm Brief Description
Multilayer perceptron 
(MLP)

Multiple layers system with a basic unit (perceptron). It allows a forward-directed flow of data 
from the input layer to the output one, passing through the hidden layer/layers, and with a learning 
algorithm of backward propagation.

Deep Learning It provides a dissection of various levels that correlate to peculiar levels of abstraction.
Convolutional Neural 
Networks (CNNs)

An MLP development applied to two-dimensional matrices through a convolution operation. 
CNN neurons are linked to a limited number of inputs of a confined continuous region, used for 
computer vision tasks.

Recurrent neural networks 
(RNNs)

Uses sequential data or time-series data and develops loops between layers, storing memories for a 
short time. They are used for voice recognition.

Deep belief networks 
(DBNs)

Links between layers but not between elements within the same layer.

Long short-term memory 
(LSTM)

Advanced version of RNN that stores information for a more extended period  
(“long-term dependencies”).

Mixed Networks Hybrid networks built by the correlation of two or more particular ANNs (e.g., CNNs and RNNs).

most used libraries [56]. It is an open-source ML li-
brary for the Python programming language. It con-
tains Supervised Learning (e.g., Linear Regression, 
Support Vector Machines, Naïve Bayes, K-Nearest 

Neighbor Classification) and Unsupervised Learn-
ing Estimators (e.g., PCA, and k-mean). The library 
is designed to work with NumPy and Pandas for data 
loading. Regardless of the model (algorithm), the 
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evaluate large datasets and for quick results. 
This method can also be the initial stage of a 
larger project.

 - Cross-validation. The dataset is randomly split 
up into ‘k’ groups. One of the groups is used as 
the test set and the rest works on the training 
set. The model is trained on the training set and 
scored on the test set. Subsequently, the opera-
tion is replicated until each group has been em-
ployed as the test set. For instance, for 4-fold 
cross-validation, the dataset is divided into four 
groups, and the model is trained and tested 
four partitioned times. Thus, each group has a 
chance to work as a test set.

If the model produces scarce performances, it can 
be re-built using improvement strategies. This process 
is called tuning.Subsequently, the method undergoes 
evaluation and tuning by using a combination of nu-
merical (metrics:accuracy, precision, and recall) and 
visual tools such as ROC curves, residual plots, heat 
maps, and validation curves. When different models 
are tested, the model with the lowest validation error 
on the validation dataset can be selected. Models of 
increasing complexity are built using the model with 
the best empirical error rate.

For evaluation of the performances, the Confu-
sion Matrix and the Accuracy Score can be used for 
Supervised Learning classification; Mean Absolute 
Error, Mean Squared Error, and R² Score for Super-
vised Learning regression. Furthermore, Homogeneity 
and V-measure are helpful for clustering in Unsuper-
vised Learning approaches.

The model evaluation can also be performed with 
ANNs. For example, Hyperparameter tuning (or hy-
perparameter optimization) is a manual procedure 
that can facilitate the control of the training process 
by modifying the number of hidden layers and/or the 
representation of nodes in each layer.

3.4.1 Model Explainability

As models have increasing complexity, it is essential 
to understand the mechanisms that lead to the predicted 
outcomes. In this context, the so-called Model Expli-
cability is a group of techniques designed to determine 
which model feature or combination led to a model-based 

Application Programming Interface (API) of Scikit-
learn is always the same:

model.fit (X-train, Y_train)
predicted_test=model.predict(X_test)

the command fit trains the model and predicted is 
used to obtain outputs.

The command for the partition is:

X_train, X_test, y_train, y_test = 
train_test_split(X,y,random_state=0)

The random state hyperparameter in the train_
test_split() function controls the shuffling process, in-
fluencing the model’s performance score. In particular, 
if the random_state=None (default value), different 
train and test sets across different executions are ob-
tained. Consequently, the shuffling process is out of 
control. Integers are used and the function will produce 
the same results across distinct acquisitions. The most 
used integers are 0 and 42. When the random_state=0, 
the same train and test sets in different executions are 
achieved. Finally, with random_state=42, although the 
same train and test sets across other executions are 
produced, the train and test sets are not comparable 
with what was obtained with random_state=0. The 
Scikit-learn cross_val_score() function is commonly 
used to calculate values (and evaluate differences be-
tween values: root-mean-square errors) in the random 
state hyperparameter.

Libraries are obtained from other commonly 
used platforms. For instance, GitHub is a potent 
platform containing various open-source software 
implementations.

3.4 Model processing and evaluation

The system processing aims to generate a method 
(i.e., model) useful for future (unseen/out-of- sample) 
data and for prediction purposes. This phase can be 
achieved through holdout and Cross-validation  
(or k-fold cross-validation) methods.

 - Holdout. It is obtained through the dataset split 
into a ‘train’ and ‘test’ set. Usually, the divi-
sion is managed by using 80% of the data for 
training and the remaining 20% for testing. It 
provides a single train-test split and is used to 
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3.4.2 Complexity, Model fitting, and 
Prediction errors

Each ML analysis aims to reduce differences be-
tween the model predictions and actual previsions. 
Consequently, a useful ML model can properly gen-
eralize any input of new data. Nevertheless, these dif-
ferences are called errors and cannot be completely 
eliminated.

There are two types of errors, namely Bias and 
Variance. Notably, correcting or optimizing them will 
increase the model’s performance, avoiding model 
fitting errors, including overfitting and underfitting 
phenomena.

Prediction errors and model fitting performances 
are related to the complexity of the model. Latter re-
fers to the complexity of the system is trying to learn, 
such as the degree of a polynomial. The optimal de-
gree of complexity is usually based on the nature and 
quantity of the training data it contains. For instance, 
with a small amount of data, or if data are not dis-
tributed equally across several possible scenarios, a 
low-complexity model should be chosen. By using a 
small number of training data, a highly complex model 
will be ‘overfitted’.

Practically, overfitting is the learning of a function 
that adapts very well to the training data but is un-
able to generalize other information. In other words, 
our architecture is rigorously learning to produce the 
training data without discovering the actual trend or 
structure that drives this output. Prediction of the data 
that the system has never encountered will be poor!

Concerning underfitting, the model cannot cap-
ture the data’s underlying trend. It implies that our 
model or algorithm does not fit the data. It frequently 
occurs when there are scarce data or when a linear 
model with reduced non-linear data is trying to be 
built. In these cases, the rules of the ML model are too 
simple and flexible to be used for such data; accord-
ingly, the model will likely produce many inaccurate 
predictions. On these premises, by summarizing:

 - Overfitting is high performance on the training 
set but not on the testing one. It resumes high 
Variance and low Bias.

 - Underfitting performs poorly on the training 
set. It expresses high Bias and low Variance.

decision. The purpose is not to explain how the model 
works but to answer the question “why an inference is 
given”. For this reason, we are moving from black boxes 
featuring mysterious or unknown  internal functions or 
mechanisms to transparent model development.

Explainability can be viewed as an instrument 
in the toolbox that helps researchers understand their 
models’ decisions and the impact those decisions have 
on expected outcomes. Several methods, such as Shap-
ley Additive exPlanations (SHAP) and Local Inter-
pretable Model-Agnostic Explanations (LIME).

 - SHAP. It is a method used to break down the in-
dividual predictions of a complex model. The aim 
is to calculate each characteristic’s contribution to 
the forecast to identify each input’s impact. The 
basic principle is the study of cooperation between 
groups of players (“coalitions”) and the contribu-
tion to the final profit. Just as in game theory, 
some players contribute more to the outcome, so 
in ML some features contribute more to the pre-
diction of the model and, therefore, have greater 
importance. Deep explainer, KernelSHAP, Lin-
earSHAP are examples of SHAP-based versions.

 - LIME. It works on “black boxes” by developing 
an interpretable model for each forecast. LIME 
attempts to understand the relationship between 
the characteristics of a particular example and 
model prediction by training a more explainable 
model, such as a linear model, with examples 
derived from minor changes to the original in-
put. The influences of perturbations in the model 
inputs on the final prediction of the model are 
evaluated. Through a training phase involving 
creating of a new set of data built on perturb-
ing samples and from the correspondences in the 
outcome, the model selects the features (accord-
ing to a qualitative and quantitative approach re-
ferred to normalized thresholds) that are the most 
important to explain model prediction. Each fea-
ture’s contribution in explaining the prediction 
developed by the model are considered. LIME 
can be used for tabular, image, or text datasets.

LIME is generally used to get a better explana-
tion of a single prediction and SHAP to understand 
the whole model and feature dependencies.
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c. Dropout. The dropout rate is the parameter 
for the abandon function; it can be defined as 
the probability of training a given node in a 
layer: 1.0 means no dropout, and 0.0 means 
no output from the layer. In neural network 
models, it reduces interdependent learning be-
tween neurons.

d. Dataset size increment. However, adding 
more data would result in increased bias.

e. Ad hoc algorithms for early stopping in the 
training phase.

3.5 Practical suggestions

For inexperienced operators, the process can be 
facilitated by ad hoc tools for data engineering, ML, 
and analytics. They are component-based visual pro-
gramming software packages that can allow simple 
data visualization, subset selection, and pre-processing 
until learning and predictive processes.

Among these instruments, KNIME is an 
open-source data tool usable for analytic processes, 
from data creation to production. Other easy-to-
use data science software platforms are Orange and 

Bias is the distance between expected and actual 
(mean) values. Thus, Bias and Variance represent op-
posite phenomena. On the contrary, Variance expresses 
the variability of the model prediction for a (single) 
given point (Figure 5).

To overcome high bias and underfitting and en-
hance the model’s performance, we can be followed 
two main strategies:

a. Increasing the number of layers or neurons in a 
layer (for ANN architectures). It increases the 
learning units that extract information from 
the previous neuronal elements, forwarding 
them to the next layer.

b. Using a new architecture (model/software).

To overcome high variance and overfitting, we 
can use several approaches:

a. Model complexity reduction.
b. Regularization (e.g., Ridge Regularization 

and Lasso Regularization). More robust regu-
larization pushes the coefficients towards zero. 
It limits a model to avoid overfitting.

Figure 5. Model fitting errors. Variance is the variability (distance from the target center) of the model prediction for a single point. 
Bias is the distance between expected (target center) and means values. In overfitting, the model has high Variance and low Bias. It 
shows high performance on the training set but not on the test one. Underfitting is characterized by high Bias and low Variance and 
produces a poor performance on the training set.
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doi: 10.1016/j.gie.2020.06.040.
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classification of skin cancer with deep neural networks? Na-
ture. 2017;542:115–8. doi: 10.1038/nature21056.

10. Hosny A, Parmar C, Quackenbush J, Schwartz LH, 
Aerts HJWL. Artificial intelligence in radiology. Nat 
Rev Cancer. 2018 Aug;18(8):500-510. doi: 10.1038 
/s41568-018-0016-5.

11. Ren Y, Loftus TJ, Datta S, et al. Performance of a Machine 
Learning Algorithm Using Electronic Health Record Data 
to Predict Postoperative Complications and Report on a Mo-
bile Platform. JAMA Netw Open. 2022 May 2;5(5):e2211973. 
doi: 10.1001/jamanetworkopen.2022.11973.

12. Paul D, Sanap G, Shenoy S, Kalyane D, Kalia K, Tekade 
RK. Artificial intelligence in drug discovery and devel-
opment. Drug Discov Today. 2021 Jan;26(1):80-93. doi: 
10.1016/j.drudis.2020.10.010.

13. Hossain MA, Hossain ME, Qureshi MJU, et al. Design and 
Implementation of an IoT Based Medical Assistant Robot 
(Aido-Bot). 2020 IEEE International Women in Engi-
neering (WIE) Conference on Electrical and Computer 
Engineering (WIECON-ECE). 2020;17-20, doi: 10.1109 
/WIECON-ECE52138.2020.9397958.

14. Hurt B, Kligerman S, Hsiao A. Deep Learning Localization 
of Pneumonia: 2019 Coronavirus (COVID-19) Outbreak. J 
Thorac Imaging. 2020 May;35(3):W87-W89

15. Li D, Wang D, Dong J, Wang N, et al. False-Negative 
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nosis and Insights from Two Cases. Korean J Radiol. 2020 
Apr;21(4):505-508
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RapidMiner. More expert users can use Orange as 
a Python library to perform data manipulation and 
widget alteration.

Several data analytics platforms for data science 
and ML are available for more skilled operators. They 
are used to store and manage data with integrated tools 
and techniques capable of carrying out a variety of data 
analysis processes. The most implemented platforms 
include Microsoft Azure, Sumo Logic, Cloudera, and 
Google Cloud.

4 Conclusion

In conclusion, every Machine Learning path-
way starts from task definition and ends in the 
model application. Different steps can be identified 
(pre-processing, exploratory data analysis, model 
selection, model processing and evaluation). High- 
performance characteristics and strict quality controls 
are needed during the different stages of its progress. 
For inexperienced operators, the whole process can be 
facilitated by ad hoc tools for data engineering, ma-
chine learning, and analytics.
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