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Abstract. Genetic variants may contribute to confer elite athlete status. However, this does not mean that 
a person with favourable genetic traits would become a champion because multiple genetic interactions and 
epigenetic contributions coupled with confounding environmental factors shape the overall phenotype. This 
opens up a new area in sports genetics with respect to commercial genetic testing. The analysis of genetic 
polymorphisms linked to sport performance would provide insights into the potential of becoming an elite 
endurance or power performer. This mini-review aims to highlight genetic interactions that are associated 
with performance phenotypes and their potentials to be used as markers for talent identification and train-
ability. (www.actabiomedica.it)
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Introduction

To be a sportsman is a highly demanding job that 
not only requires determination, dedication, nutrition, 
supportive environment and intensive training but the 
‘intrinsic ability’ coined by genetic traits. The finding 
that sport performance has a genetic background be-
came a promising area of research in sports genetics 
since late 1990s when the first discoveries highlighting 
hereditary involvement in achieving elite sports status 
were published (1,2,3). Since then, several studies have 
been conducted to elucidate the gene-gene and gene-
environment interactions that contribute to sport-
related phenotypes contributing to elite performance 
status (4-8). In fact, sports performance is a complex 
multifactorial phenomenon governed by several in-
trinsic factors such as genetic polymorphism, psycho-
motor skills, physical fitness that are greatly influenced 

by extrinsic factors such as diet, training and health 
status (9-11).

Sport performance is difficult to define precisely. 
In fact, it greatly depends on aim and objectives of 
the sports. For instance an endurance performer such 
as weightlifter has different parameters of assessing 
performance than a sprint or power performer such 
as a runner. This implicates that each sport discipline 
has unique physiological, psychological, biochemical 
and anthropometric demands that result in shaping 
an overall performance phenotype encoded by herit-
able genetic traits (12,13,14). For instance, endurance 
performance is largely dependent on maximal oxygen 
uptake (VO2 max), VO2 at lactate threshold and ef-
ficiency of movements (15). It is necessary the coor-
dinated action of cardiovascular system and muscular 
metabolism involving transportation of oxygen to and 
utilization of oxygen by the muscles (16). Besides that 
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enhanced aerobic endurance involves elevated mito-
chondrial gene expression and corresponding enzyme 
activity during aerobic respiration (17).

On the other hand power performance is depend-
ent upon muscle structure, strength and the ability to 
generate force without being injured (18). Maximal 
power is a function of force and velocity of muscle 
contraction which in turn depends on the cross-sec-
tional area and volume density of myofibrils of muscle 
fibre (19). Muscle power is the driving force behind 
sprinting, jumping and weightlifting (20).

Performance-enhancing gene polymorphisms

During the last two decades, several studies have 
provided compelling evidences that both endurance 
and power performances are influenced by genetic fac-
tors that collectively are called performance-enhancing 
gene polymorphisms (PEPs) (21). Surprisingly, PEPs 
are common in general population and more than 200 
PEPs have been reported so far (21,22). However, only 
20 out of 200 were specifically found in athletes and 
only 10 could be replicated in association studies (22). 
Since then approaches such as twin studies, familial ag-
gregation studies, genome wide linkage and association 
analyses have revealed structural variants in genes hav-
ing great influence on sport performance indicators such 
as aerobic endurance, muscular strength and power.

To understand the link between performance and 
PEPs we will consider the classic example of two of 
the most well-documented and adequately replicated 
PEPs, ACE I/ D and ACTN3 R577X that are consist-
ently linked with endurance and power performance 
phenotypes (23).

Angiotensin-conversion enzyme (ACE)

The pioneering study that revolutionized sports 
genetics is the finding of a polymorphism in ACE 
gene encoding angiotensin-conversion enzyme (ACE) 
in 1998 (23). ACE is an important enzyme of renin-
angiotensin system which regulates blood pressure 
by controlling body fluids (24). Besides this, ACE is 
involved in bradykinin degradation, respiratory drive, 
regulation of inflammatory reactions to lung injury, 

erythropoiesis, tissue oxygenation, and the regulation 
of skeletal muscle efficiency (25). 

ACE may exist in two polymorphic forms, I or D, 
depending on an intronic indel of 287 bps (26). ACE 
I has an intronic insertion of 287 bps which results in 
decreased serum and tissue ACE activity (27,28). ACE 
I/I genotype has been consistently linked to improved 
endurance performance and high exercise efficiency 
(28,29). On the other hand, the deleted form of the 
variant (D allele) is associated with higher circulating 
and tissue ACE activity (29) and enhanced power and 
strength performance in sprinting (30). In addition to 
this significantly higher frequency of ACE I allele was 
reported in elite Australian rowers as compared to nor-
mal control (31) while the I/I genotype was more fre-
quently observed than the D/D genotype in elite Brit-
ish mountaineers. Besides this, all the top performers 
had and ACE I/I homozygous genotype (32). Similar 
results have been reported by Woods & Montgomery 
(33) and Thomson et al (34). The role of the ACE gene 
in endurance performance has been recently extensive-
ly reviewed (35,36). These systematic reviews revealed 
that with few exception, I allele is typically associated 
with endurance performance in elite distance runners, 
mountaineers, swimmers and rowers while the D allele 
is associated with elite power-oriented performance 
and training-related gain of strength (35, 36). Besides 
that, I allele is involved in the alteration of metabolic 
response by maximizing oxidation fuel for metabolism 
whereas the D allele in gaining strength and VO2 max 
in response to training (36).

It is worth mentioning that although several stud-
ies have reported positive involvement of ACE I/D 
polymorphism in enhancing endurance and power 
performance some other studies have failed to report 
such association which could be due to inclusion of 
mixed sporting disciplines that results in phenotypic 
heterogeneity, sample size issues, and other confound-
ing factors such as ethnicity and geography. For in-
stance, none of the ACE I/D alleles\ were linked with 
the athletic performance in Kenyans depicting the in-
volvement of ethnic and geographic factors (37). This 
suggests that, although the genotype is associated with 
elite performance phenotype, the effect of environ-
ment and other confounding factors determine the 
ultimate performance phenotype (38).
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α-Actinin-3 (ACTN3)

Another classical example of PEPs is ACTN3 
gene that encodes a structural sarcomeric protein 
α-actin-3 found exclusively in fast type II muscle fibres 
used during explosive activities (28).

Association of ACTN3 genotype with human elite 
athletic performance was first reported by Yang et al in 
2003 (39). This was the first PEPs reported for genes 
regulating skeleto-muscle formation and function 
(38,39). They reported a significantly higher frequency 
of the functional 577R genotype in both male and fe-
male elite sprinters. Subsequent studies highlighted 
the association of RR genotype with elite power per-
formance (40) and XX genotype with lower sprint-
ing ability and muscle strength (41). Furthermore the 
power athletes were 50% less likely while endurance 
athletes were 1.88 % more likely to have XX genotype 
as opposed to RR genotype. Moreover the world class 
endurance performers had 3.7% more chances of hav-
ing an XX genotype as compared to lower level ath-
letes implicating the importance of ACTN3 at highest 
performance levels (42). ACTN3 has been consistently 
associated with high performance in sprint and power 
athletes as compared to normal control population 
where it has no association with physical capabilities 
(43). Although the role of ACTN3 in general popula-
tion is speculative the frequency of homozygous XX 
allele differs between human population of different 
ethnic origins e.g. 16% of Africans and approximately 
51% of some Eurasian populations have XX genotype 
suggesting ethnic factors in the inheritance pattern 
(44).

Genetic variants linked with injury risk

In addition to above mentioned performance in-
dicators the underlying risks for getting injury during 
sports and training is another important aspect to con-
sider during talent identification. Like other perfor-
mance associated polymorphisms resistance to injuries 
and capability to recover is also conferred by genetic 
variants (45). Athletes generally suffer from concus-
sion (mild traumatic brain injury) and tendinopathies.

Genes linked with concussion

Apolipoprotein E (APOE)

Several research groups are trying to find a link 
between the apolipoprotein E (APOE) e4 allele and 
concussion. APOE e4 has a strong association with 
Alzheimer’s diseases (AD) (46), confers risk of severe 
brain injury (47) and particularly boxers having this 
allele are more likely to develop chronic injury (48) 
hence it is speculated to be a ‘risk allele’. However in 
contrast to these reports, e4 allele was not observed 
to be associated with increased risk of concussion and 
poor outcomes after mild brain injury in college ath-
letes and children, respectively (49,50). While other 
studies have reported effect of ethnicity , age and sex 
on expression of APOE e4 allele on development of 
poorer outcomes after traumatic brain injury (51,52). 
Besides this, three variants in the promoter region of 
APOE -219G>T , -419A>T, -427T>C have been 
studied in the context of head injury (51). -219G>T 
has been found to increase the risk of concussion and 
AD in athletes with TT genotype as compared to GG 
genotype (51). Besides that, -219T augments the ex-
pression of e4 while -419T reduces the expression and 
presence and absence of these two variants have been 
linked with association of e4 with concussion (52,53).

Microtubule associated protein tau

The microtubule-associate protein tau is another 
important protein encoded by the MAPT gene that has 
been extensively associated with many neurodegenera-
tive disorders (54). Higher levels of tau protein have 
been reported in amateur boxers following head bows 
(55) and concussed hockey player in a study conducted 
among Swedish professional hockey players (n=47) 
with these levels declining after appropriate rest and 
rehabilitation (56). However there are scarce reports of 
tau protein association with concussion and only Ter-
rell et al (2008) reported a weak association between 
tau Ser53Pro and increased concussion risk (51).

Genes linked with tendinopathies

Another important risk factor associated with 
performance is risk of having muscle injuries or ten-
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dinopathies which have been linked with genetic vari-
ants in collagen-encoding genes such as COL1A1 and 
COL5A1, connective tissue wound repair gene MMP3 
and the TNC gene encoding tenascin C. Exonic SNPs 
in TNC have been linked to risk for failure in healing 
and recovery (57,58). Presence of multiple risk alleles 
in an individual potentially increase the risk of injury 
and delayed recovery (59).

Effect of single vs multiple genetic polymorphisms 
on sport phenotype

Sport performance is based on complex interac-
tions of interconnected genes and their variants which 
are responsible for regulating the key performance 
indicators and shaping the overall sports phenotype. 
In this context, the polygenic model of inheritance 
becomes more suitable for the explanation of sports 
performance (60). For example, the presence of more 
alleles associated with aerobic metabolism would result 
in better response to aerobic training (61) while having 
more alleles associated with endurance will increase 
likelihood of becoming a successful endurance per-
former (62). Besides that, some of the polymorphisms 
may fail to create an impact on performance alone but 
the presence of other polymorphisms may result in 
enhancing their impact on phenotype via genetic in-
teractions. This means that a combination of polymor-
phisms might have a significant effect on overall sports 
phenotype than single polymorphisms and they need 
to be taken into account to predict sports performance 
and training regime (62, 63). William and Folland (63) 
proposed the total score genotyping (TGS) for helping 
the assessment of the balance between selected PEPs 
and has proven to be a very sensitive and reliable tool 
in differentiating the endurance and power athletes 
(64,65) as well as in distinguishing the elite athletes 
from general population on the basis of their genetic 
profile (66). However the sensitivity and sensibility of 
the TGS is dependent upon type and number of PEPs 
included in the calculations necessitating careful selec-
tion of only consistent polymorphisms associated with 
a particular sports type for TGS calculation (67). The 
application of TGS however is limited by the fact that 
it gives same weight to all polymorphisms used (68). 

Rare genetic variants

Unravelling the physiological mechanism by 
which genetic variants effect performance becomes es-
sential in linking these variants to sports phenotype 
(69). In addition to this, rare genetic variants might 
result in sports excellence (70). For example, truncat-
ing mutations in myostatin gene (MSTN) result in en-
hancing sprinting (71). Similarly, a rare erythropoietin 
receptor gene (EPOR) variant has a significant effect 
on haematocrit and VO2 max and an Olympic gold 
medallist in country skiing was found to be carrier of 
this variant (72). Identifying more rare genetic vari-
ants may help in prediction of multitalented and gifted 
athletes with exceptional performances. Nevertheless, 
this area is still poorly understood (72).

Our current knowledge related to PEPs is still 
scarce and more research in this area is required to 
fully understand the genetic interactions resulting in 
high level sports performance. Identification of new 
polymorphisms with significant consistent association 
with sports phenotype and replication of the associa-
tion of existing PEPs across various ethnic groups and 
different environmental conditions would help to pre-
dict the sport performance of potential athletes thus 
helping in talent identification. 

Genetic variants for talent identification

The overall peak performance of an individual de-
pends upon the intrinsic ability to perform well and 
the trainability. However numerous articles published 
in the past two decades highlight the association of fit-
ness and sport performance with autosomal, X-linked 
and mitochondrial genes and their polymorphic vari-
ants (73,74). Hence, attaining elite athlete status can-
not be solely attributed to practice and hard work but 
also to the right genetic background (75). Genetic var-
iations have been reported to influence every single as-
pect of elite performance such as trainability (76), post 
exercise recovery (77-80), risk of injury (81), skill ac-
quisition (82), post exercise fatigue (83), psychological 
traits (84) and athletic development (85). Thus proving 
their potential in identification of elite athletes status.
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Genetic variants related to endurance performance

Recent advances in sports genetic have led to the 
identifications of genetic variants with potential influ-

ence on key performance indicators in both endurance 
and power sports (Table 1). The major genetic variants 
linked with endurance athlete status are those which in-
fluence aerobic endurance capacity, muscular strength, 

Table 1. Genetic polymorphisms associated with sport performance

Gene Full name Associated phenotypes Polymorphism ID References

ACE Angiotensin I converting 
enzyme

I allele, endurance performance; D 
allele, power performance

rs4646994 (Alu I/D) 28,29,31,146

ACTN3 α-actinin-3
577Ter (T) allele, endurance  

performance; Arg577 (C) allele, 
power performance

rs1815739 C>T 28,39,91,147

ADRB2 β-2adrenoreceptor
16Arg (A) and Gln27 (C) alleles, 

endurance performance
rs1042713 G>A; 
rs1042714 C>G

92,93,94,146

BDKRB2 Bradykinin receptor B2 T allele, endurance performance rs1799722 C>T 93,146

COL5A1 Collagen, type V, α1

CC genotype, protection from 
exercise-associated muscle cramps 
during an ultra-marathon; T allele, 

endurance performance

rs12722 C>T 95,96,146,148

CRP C-reactive protein,  
pentraxin-related

A allele, endurance performance rs1205 A>G 97,98,146

GABPB1
GA binding protein tran-

scription factor, β subunit 1 
(nuclear respiratory factor 2

G allele, endurance performance rs7181866 A>G 99,146

PPARA Peroxisome proliferator-
activated receptor α

G allele, endurance performance;  
C allele, power performance

rs4253778 G>C 100,101,146

PPARGC1A
Peroxisome proliferator- 

activated receptor γ  
coactivator 1 α

G allele, endurance performance rs8192678 G>A 102,103,146

VEGFA Vascular endothelial growth 
factor A

C allele, endurance performance rs2010963 G>C 104,105,146

ADRA2A α-2A-adrenergic receptor

Central role in the regulation of 
systemic sympathetic activity and 

hence cardiovascular responses 
such as heart rate and blood 

pressure

Dra I identifies a 
restriction fragment 

length polymorphism 
in the 3_-untranslated 

region (6.7-/6.3-kb 
polymorphism

92

AMPD1 Adenosine monophosphate 
deaminase 1

GG homozygotes, elite power 
athlete status, quicker acceleration 

and sprint times
rs17602729 G>A 77,149

EPAS1 Endothelial PAS domain 
protein 1

AA genotype in rs1867785, 
underrepresented in sprint/

power athletes; TT genotype in 
rs11689011, underrepresented in 

sprint/power athletes

rs1867785; rs11689011 124

(continued on next page)
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Gene Full name Associated phenotypes Polymorphism ID References

NFATC4
Nuclear factor of activated 

T cell calcineurin-
dependent 4

G allele, elite endurance athlete 
status

rs2229309 G>C 125

NOS3 Nitric oxide synthase 3
GG genotype, slower than the 

other genotypes
rs1799983 T>A>G 92,126

AGT Angiotensinogen
235Thr (C) allele, power 

performance
rs699 T>C 106,107,146

IL6 Interleukin-6 G allele, power performance rs1800795 C>G 108,109,146

TRHR Thyrotropin- releasing 
hormone receptor

C allele, muscle mass rs16892496 A>C 110,146

VDR Vitamin D receptor A allele, power performance rs1544410 A>G 111,112,146

PPARGC1B
Peroxisome proliferator-

activated receptor γ 
coactivator 1 α

C allele, power athlete status rs10060424 T>A,C 114

PPARG Peroxisome proliferator-
activated receptor γ

G allele, short-term and very 
intense exertion with anaerobic 

energy production
rs1801282 C>G 115

HIF1A Hypoxia-inducible factor 1α
T allele, higher frequency in 

weightlifters and power-orientated 
athletes

rs11549465 C>T 115,117,118

PTPRK Protein tyrosine 
phosphatase receptor type K

C allele, sprint test performance rs55743914 C>T 120

TERT Telomerase reverse 
transcriptase

G allele, sprinters rs33954691 G>A 120

RDH13 Retinol dehydrogenase 13
G allele, increased proportion of 

fast-twitch muscle fibres
rs4806637 A>G 120

CBLN2 Cerebellin 2 precursor G allele, sprinters rs8093502 C>T 120

CPNE5 Copine V G allele, sprinters rs3213537 C>T 120

CNTN4 contactin 4
A allele, overrepresented in football 

players
rs62247016 A>T 120

LINC00305, 
LINC01924

Long intergenic non-
protein coding RNA 305, 

1924

Functional role in development 
of atherosclerosis by inducing 
production of inflammatory 
cytokines in monocytes, by 

regulating apoptosis via miR-136

rs2850711 A>T 150

AGTR1 Angiotensin II receptor 
type 1

C allele, essential hypertension. 
A allele, downregulated by the 

miR-155
rs5186  A>C 151

MIR499A MicroRNA 499a

GG genotype, myocardial 
infarction and ischemic stroke. 
The rs3746444 polymorphism 
disturbs regulation of blood 

pressure and anti-apoptotic effect 
in cardiomyocytes

rs3746444 A>G 152

(continued on next page)

Table 1 (continued). Genetic polymorphisms associated with sport performance
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Gene Full name Associated phenotypes Polymorphism ID References

MIR4513 MicroRNA 4513

Blood pressure, total lipids, total 
cholesterol, low-density lipoprotein 

cholesterol, blood glucose. TT 
genotype, coronary artery disease. 

T allele, decrease in Mir-4513

rs2168518 C>T 152

MIR149 MicroRNA 149 Coronary artery disease rs2292832 T>C 152

MIR27A MicroRNA 27a

C allele, increases in the expression 
of the miR with negative effect 
on adipogenesis. CC genotype, 
protective role against T2DM. 
G allele, increased risk of early 

cardiovascular autonomic 
neuropathy

rs895819 T>A,C,G 152

CREB1 CAMP responsive element 
binding protein 1

A allele, smaller reduction in heart 
rate during a submaximal exercise 

test following training; greater 
exercise-induced temperature 

increase

rs2253206 A>G,T 148

CPT2 Carnitine 
palmitoyltransferase 2

Minor alleles, CPT2 deficiency
rs1799821 G>A; 
rs1799822 A>G

149

PYGM Muscle associated glycogen 
phosphorylase

Truncating variant, exercise 
intolerance, cramps and 

contractures during exercise and 
stressful situations

rs116987552 G>A 149

CNTF Ciliary neurotrophic factor GG genotype, athlete phenotype rs1800169 G>A 147

ACVR1B Activin A receptor type 1B
Dynamic knee flexion and 

extension, isometric strength
rs11612312 T>C; 
rs2854464 A>C,G

153

NGF Nerve growth factor
CC genotype, more anxious 
females; TT genotype, more 

anxious males, less anxious females
rs6330 C>T 154

BDNF Brain-derived neurotrophic 
factor

CC genotype, quicker sprinters 
than A allele carriers

rs6265 G>A 154

NGFR Nerve growth factor 
receptor

Vagal autonomic dysregulation rs2072446 C>T 154

MSTN Myostatin
Peak power during muscle 

contractions
rs1805086 A>G 154,155

SCN9A Sodium voltage-gated 
channel alpha subunit 9

AA genotype, increased perception 
of pain

rs1805086 A>G 154

COMT Catechol-O-
methyltransferase

A allele, higher dopamine levels; 
lower pain threshold; enhanced 

vulnerability to stress.
G allele, lower dopamine levels; 

higher pain threshold; better stress 
resiliency

s4680 G>A 154

Table 1 (continued). Genetic polymorphisms associated with sport performance
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biomechanical efficiency, mental endurance and physi-
cal characters such as weight and height (86,87). Not 
only these genetic variants are heritable but differ be-
tween ethnicities and their effect are modified by en-
vironmental factors such as training and nutrition (88).

A recent review by Ahmetov et al has highlighted 
93 endurance associated DNA variants (89) while a 
systematic research by William et al has identified 97 
DNA variants associated with VO2max/peak train-
ability (90). The key genetic variants involved in en-
durance performance and trainability are located in the 
following genes: ACE, ACTN3, ADRB2, BDKRB2, 
COL5A1, CRP, GABPB1, PPARA, VEGFA, ADRA2A, 
AMPD1, EPAS1, NFATC4, NOS3, TFAM. The func-
tions and associated phenotypes of these genes are 
listed in Table 1.

Genetic variants related to power performance

On the other hand the current literature review 
revealed 69 genetic markers associated with power 
athlete status. Most genetic markers associated with 
power athlete status are linked with skeletal muscle 
structure and function, blood pressure control, modu-
lation of oxygen uptake, inflammatory and repair re-
actions during and after exercise, regulators of energy 
metabolism and cellular homeostasis, factors that con-
trol gene expression and cellular signalling pathways 
(Table 1). The most important of these are AGT, ACE, 
ACTN3, HIF1A, PPARA, PPARGC1A, PPARGC1B, 
PPARG, PTPRK, SEMA4A, TERT, RDH13,CBLN2, 
MORC4, CPNE5, CNTN4, TRHR, VDR, IL6.

In addition to the genes listed in Table 1 there 
are some SNPs near MORC4 that were reported to 
be linked with enhancing the expression of RNF128 
in nerves while the С allele increases the expression of 
CLDN2 in thyroid tissue. These are important with 
respect to gene expression in skeletal muscles, nerves, 
blood and thyroid tissue and in skeletal muscle fibre 
composition and fast twitch muscle fibres (122,123). 
Another SNP rs12688220 near MORC4, was found 
to be associated with sprint performance, elite sprint 
athlete status, and increased proportion of fast twitch 
muscle fibres. However the mechanism through which 
this locus affect the sprint phenotype is poorly under-
stood (120).

Performance prediction and talent identification based 
on genetic profiling

Although the association of most genetic vari-
ants with sports performance has weak scientific back-
ground, their presence in an individual either alone 
or in combination predisposes towards an increased 
chance of success in power or endurance performance 
(127). Nevertheless, it should be highlighted here that 
each individual polymorphism has only limited contri-
bution to an elite athlete status and if considered alone 
may result in inadequate predicting of potential elite 
athlete phenotype (11, 127).Consequently genetic 
tests based on one or few genetic markers lack scien-
tific backing for prescription of personalised exercise 
and sports training. Therefore considering a polygenic 
profile of various polymorphic variants encoding di-
versified products involved in wide variety of cellular 
processes and pathways becomes crucial for accurate 
talent identification (128). Besides that, the identifica-
tion of large numbers of SNPs affecting a given trait 
and then combining them into a TGS model for that 
trait, would probably improve the predictive precision 
of genetic evidence (11).

Another important consideration in selecting the 
genetic markers for performance prediction is that rare 
genetic variants have a more powerful impact on sports 
phenotype as compared to common variants. One of 
the rare variants that conferred the winning perfor-
mance to Finnish cross country skiing Champion Eero 
Mantyranta is the EPOR that resulted in an increased 
red blood cell production corresponding to elevated 
oxygen carrying capacity and aerobic endurance (72, 
129). Another rare variant in lamin/AC (LMNA) gene 
was reported in one of the best Canadian sprint hur-
dler Priscilla Lopes-Schilep (130).

Although using rare genetic variants as markers 
for elite performance predictions sounds interesting 
and promising their low frequency make them hard 
to identify (11). Moreover to associate these variants 
to sports phenotypes would require studies with very 
large samples of unrelated individuals (11, 72). And 
finally there are ethical concerns as some of these vari-
ants might also predispose to disease states (129).
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Commercial genetic testing

A study conducted by William et al in 2016 re-
ports on the commercial direct to consumer (DTC) 
genetic testing. They surveyed 39 commercial testing 
companies and collected information regarding ge-
netic variants tested by them. Their results indicated 
that only 18 companies had provided details of genetic 
variants they test. ACTN3 was found to be the most 
frequently analysed variant with 88.8% of the 18 com-
panies using it for commercial testing followed by ACE 
(61.1%), PPARGC1A (50%), ADRB2 (44.4%), CO-
L5A1, VDR (38.9%), COL1A1, VEGF (33.3%), AGT, 
AMPD1, NOS3 (27.7%), MMP3, PPARD, TRHR, 
CRP (22.2%). Total number of genetic variants tested 
by these companies was 54 and only a few companies 
(7) provided a polygenic profile ranging between 14-
27 genetic variants. 11 companies with exception of 2 
companies which were providing test for single gene 
variant rest were conducting tests for 2-9 genetic vari-
ants (127).

Genetic performance tests pros and cons

Genetic plays a critical role in development of 
sports phenotype and exercise response. However to 
get positive benefits, training regimes and healthy life-
style habits are of utmost importance. In other words, 
genetic coupled with a fitness and training regime can 
lead to development of an elite performance pheno-
type. Consequently, one of the most interesting ap-
plication of sports genetic is development of tests for 
predicting performance and devise training regime. 
Furthermore, the potential for genetic testing to pre-
dict injury predisposition, may help in ensuring health 
and safety of athletes during sports training. 

An excellent example of this is one of the Austral-
ian Rugby team which claimed that it has utilized ge-
netic testing to develop training programs for its team 
members to gain a competitive edge over other teams. 
The team got tested 18 of its 24 players for 11 exer-
cise-related genes (140). Subsequently their training 
programs were redesigned according to their genetic 
profile. In addition to this some professional sports 
teams are using the genetic test results for direct train-
ing recommendations (127).

However it is important to consider that studies 
identifying these gene linkages with sports perfor-
mance have been conducted at population level and 
therefore they indicated the effect of these genetic var-
iants on a study population while the effect of a partic-
ular genetic variant may differ considerably when seen 
in perspective of a single individual. Moreover, neither 
currently nor in future there is a chance of having a 
single gene variant that can conclusively provide suf-
ficient information for an overall sports performance. 
Therefore genetic profiling to identify many genetic 
variants can help predict a world class talent and that 
can be useful if proper diet, nutrition and training re-
gimes and positive environment are provided to de-
velop the desired phenotype. It is worth mentioning 
here that, although the interest in commercial genetic 
testing is increasing, there is scarcity of evidence sup-
porting notion of exercise prescription and talent iden-
tification. Consequently, it is far too realistic to claim 
the prediction of next generation of sports champions 
(60-64). Similarly, recommendation of target specific 
training protocols for power and endurance perfor-
mance based on genotype or polygenic profile have 
insufficient evidence to guarantee their authenticity at 
the present (141). However some of the commercial 
genetic testing companies prescribe training regimes 
based on algorithmic approaches described in peer-re-
viewed research (142). Even though these tests might 
provide an insight into individual responses to training 
and exercise based on the genetic profiles these lack 
scientific backing unless improved methodologies with 
much larger sample sizes are used (141, 142).

There should be a standardized procedure of cat-
egorizing individuals as endurance or power in order to 
remove potential bias in replicating the studies (143).

Ethical concerns related to genetic testing for sports

Genetic testing in sports can raise several ethical 
concerns related to basic human rights of safety, pri-
vacy and secrecy of information. Besides that, the con-
sequence of genetic tests specifically in children that 
aspire to become athletes can have several negative 
impacts such as depression and psychological prob-
lems in case the sports related genotype is not identi-
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fied. Furthermore, most coaches, parents and athletes 
themselves do not have enough scientific background 
to understands the limitations and implications of re-
sults and this raises the questions that who should ac-
tually be allowed to ask for a test? (127)

In addition to that, genetic testing of athletes has 
a potential to be misused by commercial sports com-
panies with preferences being given to some athletes 
over other thus violating basic human rights. There-
fore the research in human sports and exercise genetics 
is also subjected to rigorous ethical screening by the 
ethical review committees as per the Helsinki declara-
tion (World Medical Association, 2008). This ethical 
review process minimises the ethical problems arising 
from genetic research and their future applications 
(127,143-145). 

Conclusion

Traditionally, sports talent identification is based 
on physical and physiological characteristics and per-
formance in a specific sports discipline. However, in-
clusion of genetic tests in talent hunt would revolu-
tionize the field of sport. Genetic tests to elucidate the 
inherent capabilities of youth with respect to sport per-
formance will not only help them in selecting the right 
sports career but also the exercise and training regime 
that would complement their genetic background. 
Early detection of potential traits of practical utility 
will help in devising training plans during growth and 
development, thus enhancing the capabilities and skills 
for attainment of peak performance. Current evidence 
suggests that a favourable genetic profile, when com-
bined with the appropriate training, is advantageous, if 
not critical for the achievement of elite athletic status. 
However, though few genes have now been repeatedly 
associated with elite athletic performance, these asso-
ciations are not strong enough to be predictive and the 
use of genetic testing of these variants in talent selec-
tion is premature. Nevertheless, further molecular level 
research is required to strengthen our understanding of 
sports genetics, however this is possible only through 
a shift in the approach of policy makers followed by 
substantial funding that would lead to achieving excel-
lence in sports.
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