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Abstract. The growth of solid tumors and their dissemination require the continuous formation of new capillary 
blood vessels. However, the association of uncontrolled growth of tumors and angiogenesis, i.e. the mechanism 
that allows the formation of new blood vessels starting from pre-existing vessels, dates back to 1971, in relation 
of Judah Folkman’s works. Since then, his group and other researchers added new key results confirming the 
important role played by angiogenesis in tumor growth and metastasis, and multiple efforts have been made to 
exploit this knowledge in developing innovative anti-cancer therapies. In this article, we discuss seminal works 
regarding molecular mechanisms involved in aberrant tumor angiogenesis, biology of endothelial cells within 
extracellular matrix, function of diverse pro- and anti-angiogenic factors, roles of metalloproteinases and pro-
tumor effects played by stromal and immune cells in the tumor microenvironment. Interestingly, growing evi-
dences indicate a key role played by inflammatory and stromal cells in both tumor development and progression. 
The present article also aim to provide up-to-date information concerning new therapeutic concepts involving 
tumor vessels normalization and anti-angiogenic agents, among which inhibitors of metalloproteinases and of 
the main angiogenic factor, vascular endothelial growth factor (VEGF) or its receptors, and the combination of 
them with immune checkpoint blockade, that seem to be the most promising ones at present.
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Introduction

Angiogenesis is defined as the formation of new 
blood vessels from pre-existing ones, in a tightly or-
chestrated balance between pro- and anti-angiogenic 
stimuli. All the contemporary knowledge about tumor 
angiogenesis is based on the pioneering works of Ju-
dah Folkman in the 70s, when he first hypothesized 
that tumor cells communicate with normal host cells 
allowing angiogenesis-dependent growth of solid tu-
mors (1, 2). 

Folkman proposed that tumors are strictly de-
pendent in their induction and dissemination on the 
incessant triggering and growth of new blood ves-
sels. He postulated that angiogenesis phenomenon 
functions as an active physiological feature regulated 

by biological factors and that tumor angiogenesis is 
driven by specific molecules released by tumor cells 
that can be potentially inhibited by new developed 
pharmacological agents. Such complex multistep pro-
cess involves not only plasma proteins extravasation 
and extracellular matrix (ECM) degradation, but also 
endothelial cell proliferation and migration, as well as 
capillary tube formation.

Such process is very important in many stages of 
human life, such as vascular remodeling in the embryo 
female reproductive cycle or wound healing. In physi-
ological conditions this phenomenon is tightly regu-
lated since in healthy tissues angiogenesis is quiescent, 
due to the dominant influence of endogenous inhibi-
tors over angiogenic stimuli (3). On the other hand, 
in pathological conditions (e.g. cancer development) 
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aberrant angiogenesis occurs disrupting the equilibri-
um by an increased secretion of pro-angiogenic factors 
and/or a down-regulation of endogenous anti-angio-
genic components (3-6).

Both normal and tumor angiogenesis share some 
basic characteristics, as both types of new vessels for-
mation involves the migration and invasion of both pre-
cursors and mature endothelial cells into the surround-
ing stroma, requiring the degradation of the existing 
basement membranes, as well as an active proteolytic 
remodeling of the resident ECM, mainly performed 
by a large family of enzymes, collectively named ma-
trix metalloproteinases (MMPs). Basically, new vessels 
could be generated through two different mechanisms, 
involving or not sprouting events. In non-sprouting 
angiogenesis the new vessels derive from the splitting 
of an existing capillary in two or more tubes following 
resident endothelial cells proliferation. On the other 
hand, sprouting angiogenesis involves endothelial cells 
invasion of the surrounding ECM, where they re-or-
ganize to form tubular structures and recruit pericytes 
(7). Stimuli regulating new vessels formation are quite 
the same in both physiological and pathological an-
giogenesis and in both cases, ECM displays a pivotal 
role as a reservoir of regulatory factors. Among pro-
angiogenic factors there are many cytokines (i.e. IL-1, 
IL-8) and growth factors such as VEGFs, vascular en-
dothelial growth factor a protein family first described 
at the end of the last century, which earliest identified 
member was named VEGFA, or VEGF (8), fibro-
blast growth factors (FGFs), angiopoietin, transform-
ing growth factor β (TGF-β), platelet derived growth 
factors (PDGFs), epidermal growth factor (EGF) se-
creted by inflammatory cells (e.g. mast cells and mac-
rophages), pericytes, keratinocytes (during epidermal 
wound healing) or tumor cells. Both normal and tumor 
tissues could also produce anti-angiogenic factors (e.g. 
angiostatin, endostatin, thrombospondins, interferons 
(IFNs), vasostatin) to modulate new vessels formation 
locally as well as in distant sites (3, 5, 7, 9).

Therefore here, together with the aim to discuss 
and to highlight subtle interactions between various 
and complex signals involved in the initiation and trig-
gering of tumor angiogenesis during tumor progres-
sion and metastasis, we also have the purpose to point 
out the relevance of innovative therapeutic strategies 

associated to inhibition of this process, such as those 
involving tumor vessels normalization and combina-
tion therapies using anti-angiogenic agents and im-
mune checkpoint blockade, that seem to be the most 
promising ones at present.

Tumor angiogenesis

Folkman’s hypotheses were based on the evidence 
that in physiological conditions vascular endothelium 
is a relatively quiescent tissue that can be activated to 
a rapid proliferation phase by appropriated stimula-
tory signals (5, 10, 11). According to Folkman’s theory 
about tumor angiogenesis, solid tumor development 
could be separated into two stages, whose main differ-
ence is represented by vascularization. 

In 1984 Folkman’s group discovered a tumor growth 
factor named fibroblast growth factor 2, also known as 
basic fibroblast growth factor, which is endowed with 
angiogenesis inducing capacity (12). Two years later, in 
1986, Harold F. Dvorak published an interesting review, 
based on his previous experimental studies on vascular 
permeability and angiogenesis in tumors, discussing the 
similarities between solid tumor stroma generation and 
wound healing, defining the solid tumor a wound that 
does not heal (13). Both stromal tumor and cutaneous 
wounds are characterized by a fibrin clot, which pro-
vides a scaffold for the migration of different biological 
elements, including new formed blood vessels, mac-
rophages, neutrophils, lymphocytes, fibroblasts and my-
ofibroblasts. Dvorak pointed out that wounds, similar to 
tumors, secrete a vascular factor and this event induces 
the release of fibrinogen from the blood vessels, causing 
blood vessels sprouting and providing a matrix through 
which they can spread.

This important result was the basis for other suc-
cesses such as the cloning of the most powerful an-
giogenic protein, acting as a highly specific mitogen 
for endothelial cells: the VEGF discovered by Napo-
leone Ferrara’s team (8). This was the same vascular 
permeability factor (VPF) that Donald R. Senger and 
colleagues from Harold Dvorak’s group, identified 
in 1983 in culture supernatants of guinea pig tumor 
cells, then widely known as VEGF (14, 15). VEGF is 
a potent vascular permeabilizing agent, being effective 
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within one-two minutes from injection into normal 
skin or other tissues of experimental animals. 
The intensive studies by H.F. Dvorak’s group, which 
led to the evidence that cancer cells secrete VPF/
VEGF, showed that its activity was not inhibited by 
anti-histaminases and other classic inhibitors of vas-
cular permeability (16). Furthermore, unlike wounds, 
where VEGF production is stopped after healing, in 
tumors, there is no extinction of its production, and 
this phenomenon is at the base of the continuous pro-
cess of tumor vascular neoformation and spread.
In 1990, Noel P. Bouck’s team reported the identifica-
tion of another inhibitor of angiogenesis: the protein 
thrombospondin-1 (17) and later Folkman’s group 
discovered two important endogen anti-angiogenic 
factors: angiostatin, a fragment derived from plasmi-
nogen, in 1994 (18) and endostatin, derived from type 
XVIII collagen, in 1997 (19). The idea that endothelial 
cells may switch from a resting state to a rapid angio-
genic growth phase was postulated by Douglas Hana-
han and Folkman in 1991 (20) and further detailed by 
subsequent investigations (21).

Overall, most solid tumors before reaching few 
millimeters in diameter, seem to be able to survive 
thanks to oxygen and nutrients derived by simple dif-
fusion, but after exceeding a critical diameter, they 
need blood supply by new vessels in order to expand 
(5, 6, 9, 22). To achieve a progressive increase in size, 
an essential requirement for solid tumor expansion lies 
is triggering the angiogenic switch through pro-angi-
ogenic stimuli predominance over inhibitory factors. 
Given that tumors cannot make capillaries on their 
own, they must recruit them from the host, and it is 
currently well accepted that tumor blood vessel forma-
tion is a complex process involving many stages where 
the activated endothelial cells sprouting from pre-ex-
isting vessels is essential for angiogenesis. 

Compared to normal vessels, new endothelial 
structures demonstrate a great functional as well as 
anatomical heterogeneity, appearing to be immature, 
irregular in shape and branching, with little and frag-
mented basement membrane and fewer intracellular 
junctions, making them highly permeable, allowing 
tumor cells to easily enter in the blood flow and me-
tastasize in even distant regions. 

Moreover, it is well accepted that there is a con-

tinuous crosstalk between the tumor and its microen-
vironment, including innate immune and stromal cells, 
such as tumor-associated macrophages natural killer 
(NK) cells and other cellular components (Figure 
1) (23-26). Growing evidences suggest a crucial role 
played by inflammatory cells within the tumor micro-
environment (TME) for both tumor development and 
progression (27). Among the host features represent-
ing tumor hallmarks (28), there are evading immune 
destruction and tumor-promoting inflammation, 
which, together with the immune cell-based induction 
of angiogenesis, underline the fundamental impact of 
innate immune cells in cancer (23, 25).

Among immune cells, NK cells are effector lym-
phocytes involved in tumor immunosurveillance upon 
interaction with tumor cells, and though they can con-
trol tumor growth by their cytotoxic activity (29) they 
can also acquire altered functions, ranging from atten-
uation of their killing activity, to tolerogenic behavior 
and acquisition of pro-angiogenic activities (30-33). 
Two main cell subtyes of peripheral blood NK cells have 
been identified in humans: the CD56dimCD16+ and the 
CD56brightCD16− NK cell subset, representing about 
90–95% of NK cells and 5–10% of peripheral blood 
NK cells, respectively. The TME-dependent unfavora-
ble feature of NK cells depends on the expansion and 
function modifications of the CD56brightCD16− NK cell 
subset. However, the CD56brightCD16− NK cells, being 

Figure 1. Tumorigenesis and invasion strongly depend on an-
giogenesis. 
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poorly cytotoxic, can release several cytokines, includ-
ing IFNγ, GM-CSF, and TNFα and this latter could 
exert a potent stimulatory effect on endothelial cells, 
resulting also in normalization of tumor blood vessels, 
as well as on activation of innate and adaptive immune 
responses, reverting the microenvironment anergy 
(34). Targeting TNFα to tumor vessels in combina-
tion with chemotherapy is an interesting novel anti-
tumor strategy (35). For these reasons, NK cells could 
become a suitable therapeutic target to modulate the 
immunosuppressive and pro-angiogenic TME and 
possibly become powerful cytotoxic anti-tumor effec-
tors (33, 36). Furthermore, from a therapeutic point of 
view, the emerging concept of normalization of tumor 
blood vessels, introduced by Rakesh K. Jain in 2001, 
in particular for combined anti-angiogenic therapies 
(37) is of great importance. Indeed, tumor-associated 
vasculature consist of an abnormal leaky and immature 
irregular vessel network in close contact with cancer 
cells, fibroblasts and inflammatory immune cells and 
abundant ECM molecules such as collagen and hyalu-
ronan. Tumor vessels normalization consists of vessel 
with a mature phenotype, fortified with perivascular 
cell coverage, and a more organized and uniform dis-
tribution of the vasculature throughout the tumor tis-
sue. One useful approach to reach vascular normaliza-
tion is the inhibition of VEGF or its receptors through 
anti-angiogenic agents, such as bevacizumab, and of 
note, the resulting normalized vessel structure induced 
intra-tumor high endothelial venules and reinforced 
tumor perfusion, thus favoring more homogeneous de-
livery of drugs, oxygen, and enhanced immune cells in-
filtration and in particular antitumor cytotoxic T lym-
phocytes (38-40). However, it has also been reported 
that a high and too prolonged infusion of anti-angi-
ogenic drugs can definitely reach an opposite effect, 
thereby inducing hypoxia, immunosuppression, tumor 
progression, and treatment resistance (41). Moreover, 
the tight interconnection between tumor angiogenesis 
and metastatic potential is recognized as a prognos-
tic indicator, as increased angiogenesis correlates with 
worse prognosis in different types of human cancers, 
among which gastric cancers (5), non-small cell lung 
cancers (NSCLC) (6), melanoma (42), and renal cell 
carcinoma (RCC) (43).

Folkman defined the concept of tumor dormancy, 

the condition related to a steady state in which com-
petent transformed tumor cells do not develop into a 
clinically detectable cancer (44) until endothelial cells 
of host vessels are activated from their physiologic la-
tent status to a rapid growing status by soluble mol-
ecules released by tumors or by signals delivered by tu-
mor-conditioned innate immune cells (Figure 1). This 
is probably due to the absence of stimulatory signals, 
or to inhibitory mechanisms or a combination of these. 
This phenomenon appears to be present in the early 
stages of primary cancers, or to the remains of primary 
tumors as is the case for undetectable disease recur-
rences and micrometastases that could subsequently 
reactivate after a latency period and evolve in a clini-
cally detectable disease (45-47).

Although tumor dissemination and metastases 
strictly depend on neoangiogenesis in response to tu-
mor-mediated release of stimulating factors from the 
surrounding ECM (e.g. FGF2, VEGF, IL-8), it has to 
be highlighted that tumor cells are able to escape from 
the primary neoplasm, to invade blood and lymphatic 
vessels, but the growth of a new cancer lesion repre-
sents only a very small subpopulation of those cells 
forming the primary bulk tumor (7, 22).

Pro- and anti-angiogenic factors

Tumor angiogenesis depends on pro-angiogenic 
stimuli produced by both tumor cells and immune 
cells present in the surrounding microenvironment, 
such as macrophages, mast cells and lymphocytes at-
tracted to the tumor site. Among the most important 
pro-angiogenic factors involved in tumor metastases 
there are many growth factors, such as VEGF, placen-
tal growth factor, FGF, PDGF, and interleukins, such 
as IL-1, and IL-8, without forgetting ECM degrading 
enzymes. Many of these pro-angiogenic factors act di-
rectly, typically VEGF and angiopoietins, while others 
show an indirect action as FGF, PDGF and ILs. As 
stated before, tumor angiogenesis also involves a dis-
regulation of the normally occurring anti-angiogenetic 
equilibrium that normally occurs in physiological state. 
Among the natural inhibitors of angiogenesis, the 
most important are trombospondin-1 and -2, IFNs, 
angiostatin, endostatin, vasostatin (3, 5, 9, 18, 19).



M. Rizzi, M. Gallazzi, F. Tosetti, L. Mortara24

Among tumor promoting agents, the plays a piv-
otal role. VEGF is a homodimeric 40-45 kDa hepa-
rin-binding glycoprotein, acting as endothelial specific 
mitogen which exerts pro-survival and anti-apoptotic 
activities. VEGF represents the major promoting fac-
tor of tumor angiogenesis since it facilitates tumor 
growth, dissemination and metastasis, as demonstrat-
ed by its overexpression, along with VEGF receptor, 
in the majority of tumor cells and in tumor-associated 
blood vessels (4). Interestingly, VEGF could also in-
duce fenestrations in small vessels even in tissues where 
micro-vascularization is not normally fenestrated, thus 
accounting, at least in part, for the high permeability 
of tumor vessels (3, 5, 22).
Furthermore, a key anti-angiogenic role is played by 
IFNs. IFNs activity is critical in angiogenesis as they 
inhibit capillary endothelial cells migration by block-
ing both the production and the efficacy of tumor pro-
angiogenic factors (9).

The recombinant humanized anti-VEGF mono-
clonal antibody bevacizumab (Avastin), developed by 
N. Ferrara and colleagues (Genentech, San Francisco 
Inc.), recognizes all VEGF isoforms and blocks bind-
ing to the VEGF receptor (48). This prototypical anti-
angiogenic agent has been used in eleven important 
trials and more than two million patients affected by 
advanced solid tumors, comprising metastatic colo-
rectal, non-small cell lung, ovarian, renal and cervical 
cancers. Phase III clinical trials demonstrated a sig-
nificant advantage in objective response rate (ORR), 
overall survival (OS) or progression-free survival 
(PFS) in patients treated with bevacizumab in combi-
nation with chemotherapy (41-43). In contrast, its use 
in metastatic breast cancer was discontinued due to the 
lack of efficacy and a low safety profile. Disappoint-
edly, resistance to bevacizumab is apparently acquired 
by angiogenesis inhibition itself, which exacerbates the 
tumor hypoxic microenvironment, with consequent 
stabilization of the hypoxia inducible factor 1 and 2 
(HIF-1, HIF-2) and HIF-dependent genes (41). This 
condition, in turn, leads to the activation of a com-
pensatory pro-angiogenic program, which represents 
a critical issue, still requiring further investigations. 
In this context, stromal and immune cells, which play 
a crucial role in supporting tumor dysmorphic neo 
vascularization by unbalanced release of growth fac-

tors and cytokines with pro-angiogenic activity (FGF, 
PDGF), deserve great attention as potential targets of 
therapy (43).

Tumor angiogenesis and extracellular matrix re-
modeling: a potential therapeutic target

Tumor invasiveness relies both on active cell mi-
gration and the ability to degrade to a limited extent the 
surrounding ECM in order to achieve tumor invasion. 
ECM degradation is mainly accomplished by MMPs, 
a wide family of Zn++ and Ca++ dependent proteases, 
working at neutral pH. MMPs are present in approxi-
mately all human cancers, as they can be produced by 
both surrounding stromal cells and tumor cells: in the 
last case, enzymes are generally sequestered on the cell 
surface and concentrated at the leading edge of tumor 
migrating cells. Due to their ubiquitous presence in 
the tumor environment, they could affect tumor spread 
in many different ways (e.g. by promoting tumor an-
giogenesis of metastases dissemination). However, 
the ECM degrading activity of MMPs is counter-
balanced by a naturally occurring family of inhibitors 
called TIMPs (tissue inhibitors of metalloproteinases), 
which are able to inhibit angiogenesis as well as tumor 
growth and metastasis (7, 9, 49-54).

MMPs, as an enzyme family, are known to direct-
ly influence the angiogenetic process by either degrad-
ing the basement membrane by the direct cleavage of 
matrix components, or by cross-activating each other, 
thus allowing endothelial cells invasion, or by cleaving 
pro-angiogenic factors (e.g. cytokines as well as growth 
factors) in order to maintain the angiogenic pheno-
type. Among all the MMPs’ family members, MMP-2 
and MMP-9 (known as gelatinases) play a pivotal role 
in driving angiogenic processes both in physiologi-
cal and pathological conditions by cleaving basement 
membrane components as well as through the modu-
lation of angiogenic regulators such as IL-8, platelet 
factor 4 (MMP-9) and FGF receptor 1 (MMP-2). 
The first evidence of the role of ECM degradation in 
tumor dissemination dates back to early 1980s, when 
L. Liotta and coworkers recognized the involvement of 
basement membrane degradation in tumor metastasis. 
Liotta and colleagues’ studies resulted in the identifica-
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tion of MMP-2, a degrading enzyme of type IV colla-
gen, the major component of the basement membrane 
(51, 52). Following such studies, the MMPs family 
rapidly expanded to include more than 20 different 
enzymes, many of which were first identified by their 
overexpression in tumor cells. Scientists’ understand-
ing of tumor environment remodeling rapidly grown 
up and actually it is known that gelatinases are not the 
only MMPs involved in tumor angiogenesis, but also 
MMP-1 and MMP-14 (also known as MT-MMP-1) 
play a role (7, 53, 54). As ECM degradation is strictly 
associated with tumor progression as well as neovas-
culature spreading, many studies focused on MMPs 
inhibition with the aim of blocking tumor dissemina-
tion. Considering that MMPs and TIMPs expression 
in physiological conditions and in the TME is differ-
ent and undergoes specific regulatory patterns, start-
ing from 1990s nearly every pharmaceutical company 
developed its MMPs inhibition research program. For 
these reasons both in vitro and in vivo studies focus-
ing on MMPs inhibition using natural (TIMPs) and 
synthetic compounds to block tumor dissemination, 
began and even reached the clinical trial stage (53-55).

The first MMPs inhibitor to be developed and 
clinically tested was batimastat, a broad spectrum 
injectable competitive peptidomimentic drug. Such 
compound was an efficient inhibitor of the main 
MMPs involved in sustaining tumor angiogenesis but, 
due to its poor solubility and very low oral bioavail-
ability, along with a high toxicity profile with severe 
systemic side effects, its development was stopped in 
phase III clinical trial. Researchers thus developed a 
new and more bioavailable analogue, marimastat (53-
55). Marimastat is known to act as a potent MMPs 
inhibitor acting as a competitive inhibitor that mimics 
enzymes’ substrate. Even if such compound is a strong 
tumor angiogenesis inhibitor, its low cytotoxicity is 
not sufficient to efficiently suppress tumor cells growth 
and proliferation. Also in this case, clinical trials did 
not revealed a significant improvement in patients’ OS 
and considering the severe systemic side effects (main-
ly represented by musculoskeletal pain and inflamma-
tion) its development was discontinued (53-55). In the 
attempt to overcome the adverse side effects linked to 
peptidomimetic drugs, pharmaceutical research point-
ed to the development of MMPs inhibitors based on 

small chemical molecules. The first product of this 
new research branch was CGS27023A (Novartis®) 
a chemical inhibitor specifically targeting gelatinases 
and acting as a Zn++ chelating compound. Such new 
drug showed a great potential in reducing tumor an-
giogenesis, but due to its low anti-proliferative effects 
along with the poor tolerability, its development was 
abandoned (53). Prinomastat was then developed as an 
optimized version of CGS27023A and entered clini-
cal trials as anti-angiogenic drug. Unfortunately, also 
in this case, the ongoing phase III clinical trials were 
withdrawn before completion due to the lack of ef-
ficacy in patients with advanced disease (53). To date 
there is only one approved drug inhibiting MMPs: 
Periostat, a chemically modified doxycycline approved 
for periodontal diseases. Such drug inhibits MMPs 
by chelating their structural cations, thus showing an 
additional way of action unrelated to its well-known 
antimicrobial power (7, 53, 54).

Even if Big Pharma interests in developing 
MMPs inhibitors to be used as powerful cancer thera-
peutics rapidly fall down, the knowledge about ECM 
remodeling and MMPs role in sustaining tumor an-
giogenesis continues to accumulate. Nowadays, it is 
well accepted that MMPs still represent an interest-
ing target for anti-cancer drugs development. In the 
light of the currently available scientific knowledge, it 
is clear that the above-mentioned clinical trials display 
a great drawback: they enrolled patients with cancers 
at different stages and were designed to evaluate OS. 
Currently, it is generally recognized that gelatinases 
play a pivotal role in the angiogenic switch at early 
stages after tumor neovascularization: in light of these 
considerations, these studies might have been more 
successful if they were conducted with patients with 
early stage cancers, or to test their efficacy as preven-
tive agents for patients undergoing surgical resection 
of primary tumors. According to the latest information 
available, MMP inhibitors development focuses on the 
design of highly potent and selective compounds and/
or on innovative delivery systems assuring preferential 
drug accumulation in the TME in order to overcome 
severe systemic side effects (7, 51). Moreover, the anti-
angiogenesis drugs can be combined with immuno-
therapies, in particular the combination with immune 
checkpoint blockades (ICB), consisting of monoclonal 
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antibodies directed to PD-1, PD-L1 and CTLA-4, 
aimed at the blockade of inhibitory pathways on tu-
mor-infiltrating lymphocytes (56). Indeed, targeting 
the tumor vessel compartment for example, could lead 
to local endothelial cell triggering that can increase the 
T-cell homing necessary in the involvement of anti-
tumor T effector cells (57).

Combining tumor anti-angiogenic agents and im-
mune checkpoint blockade

The use of the combination of anti-angiogenic 
drugs and ICBs as initial hypothesis concept has 
become a solid rationale for many new clinical tests 
currently underway, in particular for advanced mela-
noma, NSCLC and RCC (58). In a phase III trial the 
combination of an anti-PD-1 antibody (pembroli-
zumab) with a tyrosine kinase inhibitor of VEGF re-
ceptors (axitinib) resulted in improved OS, PFS and 
OS rates in comparison to the standard of care of pa-
tients with advanced or metastatic RCC (59). Other 
studies showed synergistic effects between bevaci-
zumab and ICB treatment by enhancing antitumor 
immune activation in the TME as well as systemi-
cally in both RCC metastatic patients in combination 
with anti-PD-L1 antibody (atezolizumab) in a phase 
Ib trial, and in melanoma patients in combination 
with anti-CTLA-4 antibody (ipilimumab) in a phase 
I trial (60,61).

Tumor progression is a multi-step process in 
which developing tumors incorporate a series of ge-
netic and molecular alterations, up to reach about 1-2 
mm in diameter, until they switch to the angiogenic 
phenotype. The angiogenesis phenomenon is respon-
sible for a faster tumor progression and invasion and is 
carried out by tumor cells, activated fibroblasts, tumor-
associated macrophages and NK cells. This complex 
process consists of numerous interactions between tu-
mor, endothelial, stromal and inflammatory cells, with 
also important effects played by various soluble pro-
angiogenic factors, among which in particular different 
types of MMPs that are involved in the initial phase of 
degradation of basement membrane of the ECM and 
in the regulation of the angiogenic process.
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