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Abstract. Tumor necrosis factor (TNF), also known as TNF-alpha (TNF-α), is a pleiotropic pro-inflammatory 
cytokine that exerts multiple biologic effects. The research journey into the role of TNF has been a roller-
coaster ride filled with ups and downs and it is still ongoing. At its discovery, huge expectations were laid 
upon this cytokine going so far that the cloning of human TNF, which had been achieved and published in 
1984, was examined in the general press around the globe, and its therapeutic potential in cancer treatment 
was welcomed as the opening of a new era in cancer treatment. Nevertheless, the first clinical studies did not 
yield the expected results and it seemed for a moment that the glory of TNF was ending. But the discovery 
of the pro-inflammatory effect of TNF changed the course of the research journey of this cytokine. TNF is 
a highly pleiotropic cytokine and accordingly, it plays a pivotal role in many physiological functions, and is 
involved in a wide variety of pathological conditions. TNF has become a major target in chronic inflammatory 
diseases, and its neutralization have delivered the first insights into the development of a novel category of 
pharmaceuticals, the “biological drugs”.
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Introduction 

The story of the discovery of TNF dates back more 
than 100 years and it is closely related to the history 
of anticancer treatment. William B. Coley, a surgeon 
from New York, was the first to use the endotoxin-in-
duced antitumor activity in the treatment of sarcoma 
patients by local injection of streptococcal broth cul-
tures (1). Over the course of the following years, as 
scientific research progressed, interest in Coley’s mixed 
toxins faded away but never disappeared completely. 

In 1968, Kolb and Granger, researchers from the 
University of California, reported a cytotoxic factor 
produced by lymphocytes and named it lymphotoxin 
(LT). The authors described some of the physical and 
chemical characteristics of LT, a cytotoxic factor re-

leased by human lymphocytes in vitro after stimula-
tion with phytohemagglutinin (PHA). They observed 
that LT is a heat-sensitive, trypsin-resistant molecule 
exhibiting properties characteristic of a protein hav-
ing a molecular weight of approximately 85,000 and a 
pH stability around 7 (2). Credit for this discovery was 
shared with Ruddle and Waksman from Yale Univer-
sity, who reported the same activity (3).

In 1975 the research article entitled “An endo-
toxin-induced serum factor that causes necrosis of 
tumors” was published by Carswell and colleagues in 
Proceedings of the National Academy of Sciences of 
the USA. According to Carswell et al., the cause of 
tumor necrosis was not bacterial endotoxin itself but 
rather a substance produced by host cells, most like-
ly macrophages, that led to the death of both mouse 
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and human tumors. Carswell research group named 
this cytokine “tumor necrosis factor”, now known as 
TNF-α (4) (Table 1). 

Several articles describing the production, puri-
fication, and characterization of TNF-α and LT were 
published in the early 1980s. LT and TNF factors were 
both described based on their ability to kill L-929 
mouse fibrosarcoma cells (5-7). Based on its capaci-
ty to engage the same cell surface receptor as TNF-α, 
it was discovered that LT (or TNF- β, as it is now 
commonly called) is another cytokine with cytotoxic 
actions similar to TNF-α and that it is structurally 
linked to TNF (8). Over the following15 years, papers 
emerged describing a large family of related molecules 
with contradictory roles in cell death, cell survival 
and organogenesis (9). In 1984 and 1985 human and 
mouse genes of TNF-α and LT were cloned (10-13) 
(Table 1).

Later on, the whole superfamily of 19 ligands 
related to TNF and 29 receptors was revealed. TNF 
superfamily ligands include TNF, the lymphotoxins 
(CD27L, CD30L and CD40L), FASL, APO2L/
TRAIL, LIGHT, RANKL, APRIL and BLyS/BAFF. 
They are homotrimer type 2 transmembrane proteins 
that bind one or more receptors from the TNFR super-
family. TNF receptor (TNFR) superfamily members 
are Type 1 transmembrane proteins. Members of this 
family include TNFR1 and TNFR2, LT-βR, CD40, 
NGFR, OX40, FAS, CD27, CD30 and BAFFR (9, 
14, 15). However, within this superfamily, TNF-α was 
recognized as a distinctively dominant intercellular 
communicating molecule with crucial roles in the in-
nate and adaptive immune response.

Members of the TNF superfamily mediate a 
broad range of processes in development and physio-
logic functions in the organism, such as inflammation, 
apoptosis, proliferation, invasion, angiogenesis, me-
tastasis, and morphogenesis. Most of TNF molecules 
are produced by immune cells, which are involved in 
in host defense mediating an inflammatory response 
against infectious agents and malignancies (16). Be-
sides the immune system, TNF proteins play a pivotal 
role in cardiovascular, neurologic, pulmonary, and met-
abolic diseases and in numerous autoimmune diseases. 
As a matter of fact, due to their involvement in a varie-
ty of pathological conditions, TNF superfamily mem-

bers have become active targets for drug development 
in the last 20 years. 

In the first instance, the use of TNF-α seemed 
promising in the cancer treatment but was soon 
abolished due to severe toxicity. On the other hand, 
systemic inhibition of TNF-α was shown to have re-
markable therapeutic effects in the treatment of sev-
eral autoimmune diseases (17). Contemporary, it was 
shown that continuous use of systemic anti-TNF/an-
ti-LTα biologics could increase the risk of cancer (18). 
In this review, we summarize findings regarding the 
discovery of TNF-α and its role in cancer and discuss 
some unresolved disputes.

The discovery of TNF-α

The notion of the phenomenon that certain cancer 
patients who developed concurrent bacterial infections 
sometimes experience concomitant remissions of their 
malignant disease was established as far as 1700s. In 
1774, a Parisian physician Dupré de Lisle injected pus 
into the leg of a patient with advanced breast cancer 
and observed that as the leg infection got worse the re-
gression of cancer was more pronounced (19). During 
the 19th century, Busch and Fehleisen noticed regres-
sion of breast cancer and lymphoma after accidental 
erysipelas infections by erysipelas (a superficial, strep-
tococcal infection of the skin) (20). In 1868, Busch was 
the first who intentionally inoculated a cancer patient 
with erysipelas and reported decline in the spreading of 
the malignancy (21). Fehleisen repeated this treatment 
experiment in 1882 and identified Streptococcus pyo-
genes as the causative agent of erysipelas (22) (Table 1). 
These first attempts remained at the level of mere ob-
servations until the experiments by William B. Coley, 
an innovative surgeon from New York. By examination 
of a series of medical reports, Coley observed that the 
concomitant erysipelas infection favored remission of 
sarcoma. His first experiment was performed in 1891 
and consisted of local injection of streptococcal broth 
cultures in a cachectic patient with inoperable sarcoma 
of the neck and tonsil, at 3-to-4-day intervals (23) (Ta-
ble 1). Coley noted only slight local reactions that last-
ed 24-48 hours, but the tumor slightly diminished in 
size, with general improvement of patient conditions. 
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Several months after treatment discontinuation, the 
tumors began to increase, reaching their former size. 
Coley attempted one more time with the injection of 
a new culture, which resulted in a severe attack of ery-
sipelas which was almost fatal for the patient. Interest-

ingly, the tumor of the neck began to break down on 
the second day of the infection. The infectious attack 
lasted for 2 weeks after which the large tumor of the 
neck completely disappeared. The patient regained his 
usual health and strength and was in good condition 

Table 1. Timeline of discovery of the TNF-α and its role in the cancer 

Year Discovery Reference

1774 Dupré de Lisle injected pus into the leg of a patient with advanced breast cancer and observed that 
as the leg infection got worse the cancer regressed more

19

1868 Intentionally inoculated a cancer patient with erysipelas, and reported decrease of the malignancy 21

1882 Repeated previous experiment in 1882 and ultimately identified Streptococcus pyogenes as the caus-
ative agent of erysipelas

22

1892 William Coley treats his first sarcoma patient with erysipelas 23

1896 Coley’s mixed toxins used clinically for the first time 25

1931 Bacterial extracts shown to cause tumor necrosis in a guinea pig model of sarcoma 30

1944 Endotoxin is hypothesized as the active principle of tumor necrosis serum 31

1952 Endotoxin alone does not kill tumor cells in vitro 33

1962 Transfer of tumor necrotic activity in serum of endotoxin- treated animals 32

1968 Discovery of LT 2,3

1975 TNF discovered 4

1984-1985 Human and mouse TNF genes cloned 10, 12 

1984-1988 Local treatment with recombinant TNF causes tumor necrosis in a range of mouse models 10, 46, 52, 48 

1984-present Identification and characterization of other members of the TNF and TNF receptor families 9, 15

1985 TNF and cachectin are identical 87

1985 TNF-α, in synergism with IFN-γ, activates neutrophils in vitro 85

1986 TNF-α exerts mitogenic effect on both mouse and human untransformed fibroblasts 82

1987 First clinical trials of TNF in advanced cancer 93, 94, 95

1987 TNF produced by cancer cell lines 66

1987 Angiogenic activity of TNF reported 96, 74

1989 Chromatographic purification of a binding protein, now known to be TNFR1 (also known as 
TNFRSF1A)

39

1990 Purification of a soluble form of the TNFR2 (also known as TNFRSF1B) 40

1989-1990 TNF-α mRNA and protein could be detected in malignant and stromal cells in human cancer 
biopsies

69, 70

1989–1993 TNF may increase cancer growth and spread 67, 75, 97

1989 TNF-α in combination with IL-1 activates endothelial cells, leading to the significant change in 
the tumor vasculature

56

1990 Cloning of TNFr1 98, 99

1990 Cloning of TNFr2 100, 101

1992 TNF, IFN-γ and mild hyperthermia treatment using isolated limb perfusion causes tumor necrosis 
in patients with sarcoma and melanoma

102

1994 First report of clinical activity of TNF antagonists in rheumatoid arthritis 103

1996 First TNF-knockout mouse 76

1999 TNF-knockout mice are resistant to skin carcinogenesis 77
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for 8 years, until he experienced a relapse and died of 
the disease (1). From this first attempt Coley learned 
several important lessons: (i) erysipelas was not easy 
to induce; (ii) erysipelas was not easily controllable 
once induced and could be life-threatening in onco-
logic patients; (iii) some retardation of tumor growth, 
which was temporally associated with the injections 
even when erysipelas did not develop, was present; (iv) 
during the severe attack of erysipelas, a dramatic re-
gression of the disease was observed. After several at-
tempts resulting in patients’ death, Coley began using 
the heat-killed versions of streptococci, which had only 
minor therapeutic effects. After coming across a pub-
lication in which was demonstrated that the virulence 
of streptococcal cultures could be enhanced by co-in-
jection of the animals with heat- killed Serratia (24), 
Coley introduced his “vaccine” which consisted of less 
dangerous filtrates from cultures of heat-killed Strep-
tococcus pyogenes and heat killed Gram-negative endo-
toxin producing Serratia marcescens (25). Coley’s tox-
ins consisted of an undefined mix of factors extracted 
from both Gram-positive and Gram-negative bacteria. 
Most likely, the combination of endotoxins induced a 
cytokine cascade that eventually led to effective antigen 
presentation to the immune system and cancer remis-
sion. Coley treated over 800 patients and approximate-
ly half of them had an impressive clinical improvement 
(26). From today’s point of view, these data are quite 
controversial since they contain several potential biases: 
they were uncontrolled and quite frequently not repro-
ducible; their effectiveness, as reviewed 40 years later 
by William Coley’s daughter Helen Coley Nauts, was 
mostly based on anecdotal evidence.

Nevertheless, in 1934, the American Medical As-
sociation wrote that Coley’s toxins “may sometimes play 
a significant role in preventing or retarding malignant 
recurrence or metastasis” and that “occasionally they 
may be curative in hopelessly inoperable neoplasms” as 
in that time frame they were the only known treatment 
for cancer (27). If the data produced by Coley were 
to be taken as they are, we could conclude that Coley 
was able to obtain rapid and extraordinary responses 
in patients who would represent a major challenge to 
oncologists even today (28, 29). 

As research advances were made in the field of 
cancer treatment mainly by developing radiotherapy 

and chemotherapy, interest in Coley’s mixed toxins sig-
nificantly diminished. However, several groups of sci-
entists continued this line of research. In 1931, it was 
shown that bacterial extracts caused tumor necrosis in 
a guinea pig model of sarcoma (30), in 1944 isolated li-
popolysaccharide (LPS) from bacterial extracts tumor 
regression in a mouse model of cancer (31). O’Malley 
et al. were the first to use the term “tumor necrotizing 
factor” in a study in which they demonstrated that se-
rum from endotoxin-treated animals led to necrosis of 
the tumor in animals with experimental cancers (32). 
In 1975,working on a murine model Meth A sarcoma, 
Carswell et al., discovered that the factor responsible 
for the “hemorrhagic necrosis” of transplanted tumors 
in animals was the host cells and not endotoxin itself. 
More than 20 years before, Algire et al. (33) proved 
that endotoxin does not kill tumor cells in vitro, spec-
ulating that hemorrhagic necrosis could be secondary 
to endotoxin-induced hypotension, leading to circula-
tory stasis and tumor ischemia. Carswell group went 
further and proved that endotoxin forced the host to 
release a toxic factor for the tumor, offering a more 
evident justification for endotoxin’s indirect impact. 
Carswell group partially characterized TNF as a gly-
coprotein with a molecular weight of about 150,000 
kDa which migrates with α-globulins (34) (Table 1). 
The cellular origin of TNF was unknown at the time, 
but the authors speculated that macrophages may be 
the source of it since the macrophage-inciting chemi-
cals were required for its demonstration. In support of 
this hypothesis, the spleen of infected mice enlarged 
two hours after bacillus Calmette-Guerin (BCG) in-
fection, with massive macrophage hyperplasia and 
elevated TNF circulating levels (4). One of the most 
intriguing findings of Carswell et al.’s work was the 
“provocative” behavior of macrophages which gained 
specific toxicity against malignant cells after exposure 
to agents such as BCG, endotoxin, and some protozoa 
(35, 36). Based on their findings, Carswell et al. hy-
pothesized that because TNF exhibits discriminatory 
toxicity in vitro for transformed cells, it could poten-
tially mediate the selective cytotoxicity of activated 
macrophages as well. That was the beginning of char-
acterizing TNF as a strong pro-inflammatory mediator 
in the immune system, as it will be demonstrated years 
later. Between 1984 and 1985 the group of Aggarwal 
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structurally identified two different TNFs and cloned 
their genes. By using hundreds of liters of conditioned 
medium collected from the human lymphoblastoid 
cell line RPMI 1788, they have purified a protein 25 
kDa in size, which was initially termed lymphotoxin-α 
(LT-α) and then renamed TNF-β (6, 7). Aggarwal et 
al. isolated a second cytotoxic factor with a molecular 
mass of approximately 17kDa and named it human 
TNF-α (5) using the same experimental approach 
(cell lysis assays and antibodies against lymphotoxin) 
and hundreds of liters of conditioned supernatants of 
human promyelomonocytic cell line HL-60. Although 
it is unclear whether the factor discovered by Carswell 
et al. through functional studies was the same factor 
examined by Aggarwal’s group, it was the latter group 
that characterized TNF and LT at the molecular level 
by analyzing the amino acid sequence (5, 6, 7). It is 
worth noting that by creating antibodies against TNF 
and LT, it was discovered that these proteins are im-
munologically distinct, with TNF-α produced by mac-
rophages while TNF-β by lymphocytes (37, 38). The 
full-length cDNAs for TNF-α and TNF- β were pre-
pared and isolated by using an already-defined amino 
acid sequence (10, 11). After the discovery of TNF-α 
the next big challenge for the scientist was the iden-
tification of cell surface receptors. In 1985, it was re-
ported that radiolabeled recombinant TNF-α and LT 
were bound to a single class of receptors on carcinoma 
cells (8). Chromatographic purification of a binding 
protein, now known to be TNFR1 (also known as 
TNFRSF1A), was achieved in 1989 (39), and a sol-
uble form of the TNFR2(also known as TNFRSF1B) 
was purified in 1990 (40) (Table 1). These receptors 
are now identified by CD numbers as well: TNFR1 is 
CD120a and TNFR2is CD120b implying that they 
are both located on hematopoietic cells. TNFR1 has 
a far broader distribution than TNFR2, being prac-
tically expressed by every cell in the body (41). Genes 
for both TNF receptors were cloned in 1990 (reviewed 
in 41). The cloning of genes encoding TNF and TNF 
receptors enabled the development of several research 
tools, including gene-deleted mice that will further 
open the door for enormous amounts of research and 
discoveries regarding the potential roles of TNF-α.

TNF-α and tumor necrosis 

In the years following its discovery, TNF-α cy-
totoxic effects were demonstrated in various animal 
cancer models as well as in human and murine-trans-
formed cells in vitro (42-47).

Simultaneously, a similar T-cell immune re-
sponse to the curative effects of endotoxin therapy was 
demonstrated (48, 49) were findings of the influence of 
TNF/IL-2/α-interferon combination therapy on can-
cer progression and metastasis (50, 51). 

Furthermore, high dosages of human recombinant 
TNF-α caused necrosis of both syngeneic and xeno-
grafted tumors, but only with numerous local injec-
tions; otherwise, the chance of regrowth at the lesion’s 
perimeter was greatly enhanced. (10, 46, 52, 53). An 
exception of this observation was the transplantable 
murine tumor Meth A sarcoma. In this type of tumor 
the systemic administration of TNF-α consistently 
caused hemorrhagic necrosis (10, 54, 55). The finding 
that tumor necrosis caused by TNF-α was hemorrhag-
ic in nature, sparked intense attention and provoked 
further research. Mantovani & Dejana, in 1989 report-
ed that in combination with cytokine interleukin-1 
(IL-1), TNF-α was able to activate endothelial cells in 
a gene expression-dependent way, leading to a signifi-
cant change in tumor vasculature (56) (Table 1). 

Immunocytokines have recently been generated 
by the approach of fusion proteins between cytokines 
and antibody fragments, and those using TNF have 
been studied in vitro, in mouse models (57, 58, 59, 60), 
and clinical trials in humans with encouraging results. 
Moreover, TNF holds promising synergistic potential 
when combined with cancer immunotherapy, chemo-
therapy, anti-angiogenic therapy, or even with other 
immunocytokines (61-65).

TNF-α and tumor progression 

Not all findings supported the hypothesis of 
TNF-α as a newly discovered miraculous molecule 
against cancer. In 1987, Spriggs et al. reported that 
TNF-α could induce a breast cancer cell line to pro-
duce more TNF-α (66). Other studies showed that 
TNF-α might induce the growth and enhance the 
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progression of tumor metastasis (67, 68). This was 
followed by reports that TNF-α mRNA and protein 
could be detected in malignant and stromal cells in 
human cancer biopsies (69, 70, 71) and that levels of 
plasma TNF-α were increased in some cancer patients, 
especially those with poor prognosis (reviewed in 72, 
73). In 1987, Leibovich et al. were the first to prove 
that TNF-α might stimulate tumor growth acting as 
a potent inducer of new blood vessel growth (angio-
genesis) (Table 1). Namely, in vivo at very low doses, 
TNF-α induces capillary blood vessel formation in 
the rat cornea and the developing chick chorioallan-
toic membrane. Moreover, in vitro, TNF-α stimulates 
chemotaxis of bovine adrenal capillary endotheli-
al cells and induces cultures of these cells, grown on 
type-1 collagen gels, to form capillary-tube-like struc-
tures. In addition, the authors show that the angio-
genic activity of TNF-α, produced by activated murine 
peritoneal macrophages, is completely neutralized by a 
polyclonal antibody to TNF-α. The authors conclude 
that TNF-α can have multiple roles. For example, in 
inflammation and wound repair, due to the angiogen-
ic activity TNF-α could augment repair. On the other 
hand, in cancer TNF-α can have dual role, might both 
stimulate tumor development through the angiogenic 
activity and participate in tumor destruction by direct 
cytotoxicity (74).

In 1989, while studying intraperitoneal xeno-
grafts of ovarian cancer cells. Malik et al., showed that 
TNF-α treatment could transform ascitic free-floating 
tumor cells into solid peritoneal deposits with exten-
sive stroma and blood vessels (75), which was further 
confirmed in various studies (75, 67). 

The first TNF-knockout mouse was created in 
1996 (76), which enabled more profound studies 
and gave much needed answers regarding the role of 
TNF-α in cancer. Shortly after the creation of Tnf–/– 
knockout mice, a paper was published in which was 
shown that, when treated with a skin carcinogen, 
Tnf–/– mice developed fewer, not more, tumors (77). 
This finding was followed by studies in models of lung 
and liver carcinoma showing a decreased metastasis 
burden, rather than augmentation, in Tnfr1–/– mice 
compared with normal counterparts (78, 79).

It is now acquired that many malignant cells con-
stitutively produce small amounts of TNF-α, enhanc-

ing the growth and spread of syngeneic, xenogeneic 
and carcinogen-induced tumors of the skin, ovary, 
pancreas, pleural cavity and bowel (41). Indeed, a huge 
number of inflammatory cells and products/mediators 
of inflammation are detected in tumor microenviron-
ment (80). There is substantial evidence that inflam-
mation itself increases the risk for cancer development 
favoring proliferation and survival of malignant cells, 
angiogenesis and dissemination (80, 81). TNF-α is 
one of the major mediators of cancer-related inflam-
mation (72). The research of the past 30 years has just 
begun to reveal its mechanisms of actions.

Other roles of TNF-α

Since its discovery numerous roles of TNF-α 
have been unveiled. It has been shown that TNF-α ex-
erts some non-cytotoxic effects on normal cells such as 
mitogenic effect on both mouse and human untrans-
formed fibroblasts (82) and, in the case of a precur-
sor to a cytotoxic T cell can replace the specific action 
of IL-1 (83, 84). At least in human systems TNF, in 
synergism with interferon (IFN)-γ, activates neutro-
phils in vitro (85). TNF is also identical to cachectin 
(86, 87, 88). TNF directly or indirectly influences gene 
expression in untransformed target cells. For example, 
it enhances the synthesis of class-I HLA-antigens in 
vascular endothelial cells and dermal fibroblasts (89) 
and induces other surface antigen in endothelial cells 
(90). 

However the multiple roles TNF-α have the 
negative side as well. The inappropriate or exces-
sive activation of TNF-α signaling is associated with 
chronic inflammation and can eventually lead to the 
development of pathological complications such as 
autoimmune diseases, such as rheumatoid arthritis, in-
flammatory bowel disease, psoriatic arthritis, psoriasis, 
autoimmune uveitis, multiple sclerosis, systemic lupus 
(18). The role of TNF-α in these diseases has not been 
entirely understood; however, it is generally known to 
contribute to the progression of disease when exces-
sively produced by activating and accumulating spe-
cific cell types causing tissue structure deformation 
(reviewed in 91). Understanding of the TNF-α signal-
ing mechanism has been expanded and applied for the 
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treatment of autoimmune diseases, which has result-
ed in the development of effective therapeutic tools, 
including TNF-α inhibitors. Thus, one of the stand-
ard treatments for most of these disorders is systemic 
TNF neutralization nevertheless is connected with an 
increased risk of non-melanoma skin cancer (18).

In recent years, it has become clear that TNF-α 
drives inflammatory responses through direct mecha-
nism of induction of expression of specific inflamma-
tory genes, but also indirectly by inducing cell death 
(92), hence participating in numerous pathological 
conditions in the human body. For instance, in the 
brain, TNF-α induce pro-inflammatory signals, im-
plicated in depression, bipolar disorder, epilepsy, 
Alzheimer’s disease, and Parkinson’s disease. TNF-α, 
along with other inflammatory molecules, has a pivotal 
role in the initiation and progression of several cardi-
ovascular and pulmonary diseases, including asthma, 
chronic bronchitis, chronic obstructive pulmonary dis-
ease, acute lung injury, and acute respiratory distress 
syndrome (15). 

Conclusion 

TNF-α was initially considered the most prom-
ising agent for cancer treatment, but accumulating ev-
idence changed this perception. Nowadays we know 
that inflammation bears both positive and negative 
effects on cancer and other diseases depending on 
specific conditions, target cells and microenviron-
ment. The challenge is to harness the helpful aspects 
of inflammation and propagate them towards positive 
outcomes in cancer or in other diseases. The question 
if the TNF-α could be the key for resolving this chal-
lenge, remains open even after almost one century of 
intensive research.
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