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Summary

Primary liver cancer is a major public health
problem, accounting for about 600,000 deaths in
the world annually, with hepatocellular carci-
noma (HCC) accounting for about 80% of all
primary tumours in the liver and intra-hepatic
cholangiocarcinoma (ICC) representing about
10-15% of the remaining primary hepatic malig-
nancies. Incidence and mortality trends for both
HCC and ICC are increasing globally, with
particular concern for US and Europe, and
survival rates are still very poor. Some risk
factors are well-established, such as hepatitis
viruses, alcohol intake and aflatoxins exposure
for HCC, and infection with liver flukes and
primary sclerosing cholangitis for cholangiocarci-
noma (CC). However, these known etiologies do
not explain the observed increased incidence of

Riassunto

I tumori primitivi maligni del fegato sono un
grande problema di salute pubblica, essendo la
causa di 600.000 decessi l’anno nel mondo. Il car-
cinoma epatocellulare (HCC) rappresenta l’80%
di tutti i tumori epatici maligni primitivi, mentre il
colangiocarcinoma intra-epatico (ICC) rappre-
senta circa il 10-15% dei rimanenti tumori epatici
maligni. L’incidenza e l’andamento della morta-
lità per HCC e ICC sono globalmente in aumento,
con particolare preoccupazione negli Stati Uniti e
in Europa, e i tassi di sopravvivenza sono ancora
molto bassi. Alcuni fattori di rischio sono ben sta-
biliti: i virus dell’epatite, il consumo di alcool e l’e-
sposizione ad aflatossine per l’HCC; le parassitosi
da vermi epatici e la colangite sclerosante prima-
ria per il colangiocarcinoma (CC). Tuttavia, que-
ste eziologie conosciute non spiegano l’osservato
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Abbreviations

AFB1: Aflatoxin B1
AFP: Alpha-fetoprotein
AHF: Altered hepatic foci
AUROC: Area under receiver operating curve
CC: Cholangiocarcinoma
CT: Computed Tomography
CYP4502E1: Cytochrome P450 2E1
ECC: Extrahepatic cholangiocarcinoma
ER: Estrogen Receptor

HCC: Hepatocellular carcinoma
HBV: Hepatitis B Virus
HCV: Hepatitis C Virus
HTLV-1: Human T-cell lymphotropic virus
ICC: Intrahepatic cholangiocarcinoma
MRI: Magnetic Resonance Imaging
NAFLD: Non-alcoholic fatty liver disease
PAH: Polycyclic aromatic hydrocarbons
PET: Positron Emission Tomography
PSC: Primary sclerosing cholangitis
VCM: Vinyl chloride monomer 
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these two malignancies worldwide. Environ-
mental carcinogens could play an underestimated
rôle in the increased global burden of primary
liver cancers. An essential tool to identify chem-
ical and physical carcinogenic agents is long-term
carcinogenicity bioassays, such as those
performed by the US National Toxicology
Program and the Ramazzini Institute. Although
some strains of rodents are reported to be more
susceptible to chemical-induced hepatocarcino-
genicity, many similarities in histologic, cytolog-
ical and molecular pathways are shared between
humans and rodents in liver tumorigenesis, thus
making long-term carcinogenicity bioassays the
best available tool for identifying environmental
carcinogenic agents, including those targeting the
liver. Moreover, early detection of HCC and CC
should provide a valuable means to decrease
mortality rates in the short term, but reliable
biomarkers are not yet available for clinical prac-
tice. Advanced technologies such as proteomics
and in vivo imaging techniques are now available
for animal cancer models. Well-designed proto-
cols which will integrate a proteomic approach
with imaging diagnostics using animal models
may result in greater improvement for
biomarkers development in early diagnosis of
primary liver cancers. Eur. J. Oncol., 14 (3), 133-
150, 2009

Key words: hepatocellular carcinoma, cholangio-
carcinoma, environmental carcinogens, long-
term carcinogenesis bioassays, rodents,
biomarkers

aumento di incidenza di questi due tumori maligni
nel mondo. I cancerogeni ambientali potrebbero
giocare un ruolo sottostimato nell’aumentata inci-
denza globale dei tumori primitivi del fegato. Uno
strumento essenziale per identificare agenti cance-
rogeni chimici e fisici sono i saggi di cancerogeni-
cità a lungo termine, come quelli effettuati al Na-
tional Toxicology Program degli Stati Uniti e all’I-
stituto Ramazzini. Nonostante sia riportato in let-
teratura che alcuni ceppi di roditori siano più su-
scettibili all’insorgenza di epatocarcinomi chimi-
camente indotti, molte somiglianze istologiche, ci-
tologiche e nei meccanismi molecolari sono condi-
vise negli esseri umani e nei roditori per quanto ri-
guarda la cancerogenesi epatica, rendendo così i
saggi di cancerogenicità a lungo termine il miglior
strumento disponibile per identificare gli agenti
cancerogeni ambientali, inclusi quelli che colpisco-
no il fegato. Inoltre, l’identificazione precoce di
HCC e CC potrebbe fornire un mezzo importante
per diminuire i tassi di mortalità nel breve perio-
do, ma nella pratica clinica non sono ancora di-
sponibili biomarcatori affidabili. Tecnologie avan-
zate, come la proteomica e la diagnostica per im-
magini in vivo, sono ora disponibili per i modelli
animali del cancro. Protocolli ben progettati, che
integrino un approccio proteomico con la diagno-
stica per immagini utilizzando modelli animali per
il cancro, possono contribuire a un importante mi-
glioramento per lo sviluppo di biomarcatori per la
diagnosi precoce dei tumori primitivi maligni del
fegato. Eur. J. Oncol., 14 (3), 133-150, 2009

Parole chiave: carcinoma epatocellulare, colan-
giocarcinoma, cancerogeni ambientali, saggi di
cancerogenicità a lungo termine, roditori, bio-
marcatori
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Introduction

Primary liver cancer is a major public health
problem, accounting for about 600,000 deaths in the
world in 2002 (1). Hepatocellular carcinoma (HCC)
accounts for about 80% of all primary cancers in the
liver, while intra-hepatic cholangiocarcinoma (ICC),
arising from the epithelium of bile ducts located in
the liver, represents about 10-15% of the remaining
primary hepatic malignancies (2, 3). Hepatoblas-
toma (a malignant embryonal tumour of the child-
hood) and hepatic angiosarcoma (arising from blood
vessels) account for the remaining 5-10% (2).

In this review we will summarize current epidemi-
ological data on HCC and biliary malignancies,
particularly ICC. Biological, dietary and environ-
mental risk factors of these diseases will be
reviewed. The rôle of experimental carcinogenicity
bioassays in the identification of hepatocarcinogens
and of animal models for development of
biomarkers for early detection of carcinogenic
process in the liver will be discussed.

Epidemiology

Geographic distribution

HCC is the fifth most common cancer worldwide
with about 500,000 new cases annually, representing
the third most common cause of cancer-related death
among men and the eighth in women (1, 4). The
geographic distribution of primary liver cancer
burden is not even: more than 80% of HCC cases
occur in sub-Saharan Africa or Eastern Asia (5) with
China accounting for 55% of the world’s cases (2).
Cholangiocarcinoma (CC) has highest incidence
rates in some Asiatic countries, such as Thailand
with 96 cases per 100,000 people, about 100 fold
with respect to some Western countries (6). 

Incidence and mortality trends

Time trends in primary liver cancers may be diffi-
cult to interpret due to changes in classification,
variable inclusion of metastatic tumours and only
recent inclusion of topographical coding for CC
distinguishing intrahepatic from extrahepatic CC.

However, slight decreases in the HCC incidence in
high-rate areas, such as China and Japan, have been
reported (7), while a sustained increasing trend has
been reported in low-rate countries, particularly the
United States and some European countries, such as
Italy, France, UK and Germany (2, 5). It merits
noting that these increasing trends are associated
with younger age groups (2). In the United States
HCC incidence rates doubled in the period 1985-
2002 with age distribution shifting towards younger
age ranges, particularly 45-60 years old, and HCC
has become the fastest growing cause of cancer-
related death in men (8). Interestingly, it has been
reported that in the United States 15-50% of HCC
patients had no established risk factors, such as
hepatitis viral infections, heavy alcohol consump-
tion or aflatoxin B1 exposure (5). In Europe an
analysis of mortality rates from HCC trends in the
last 20 years has shown increasing rates for men in
11 countries and for women in 6 countries out of 17
whose data were considered (9). In particular,
France and Italy are the countries with the highest
mortality rates from HCC for men in the period
2000-2003, with 6.79 and 6.72 deaths/100,000
respectively. In the last 20 years mortality rate per
100,000 men has increased from 3.57 to 6.79 in
France and from 5.60 to 6.72 in Italy. Italy is also the
first country for mortality rates from HCC for
women (1.92 deaths/100,000), while France has
0.96 deaths/100,000. However, mortality rates for
women show a decrease from 2.48 to 1.92 per
100,000 women in Italy and an increase from 0.69 to
0.96 per 100,000 women in France in the last same
period (9).

With regard to biliary malignancies, ICC and extra
hepatic CC (ECC) show different epidemiologic
features: ICC incidence and mortality are increasing
worldwide, while those of ECC are slightly
decreasing (3). A US study using data from the
Surveillance, Epidemiology and End Results
(SEER) program has shown that incidence trends in
ICC more than doubled approximately between
1976 and 2000 (10). Similar results have been shown
in another study which reported a 165% increase in
ICC incidence comparing the period 1975-1979 to
1995-1999 (6). ICC incidence and mortality rates are
also increasing in most European countries: in the
last decades trends in mortality rates show an
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increase in 13 out of 15 analyzed countries for both
men and women (11). In particular England-Wales
and Scotland showed the highest mortality rates for
both men and women: 0.83 (men) and 0.63 (women)
deaths/100,000 and 1.17 (men) and 1.00 (women)
deaths/100,000 respectively. The percent increase is
315% for men and 271% in women in England-
Wales comparing 1979-1981 with 1995-1997, while
in Scotland this increase is 216% for men and 335%
for women in the same period (12).

Survival

Survival rates for HCC after 5 years are still very
poor also in developed countries, as low as 8% in the
United States, 10% in Italy and 9% in France (2, 13,
14). Survival rates for CC are also very poor, ranging
2-7%, although early diagnosis may allow surgical
resectability of small or little infiltrating malignan-
cies, thus increasing 5-years survival rates to 25-
30% (15-18).

Biological risk factors

Hepatitis B (HBV) and C (HCV) infections have
been reported to be associated with over 80% of
HCC in the world (19). It has been estimated that
HBV carriers have more than 100-fold increased
risk of HCC compared with non-infected individ-
uals (20). HCV infection is a more important risk
factor for HCC than HBV in Western countries and
Japan. HCV infection markers have been detected in
variable proportions of patients in Italy (44-66%)
(21), France (27-58%) and Spain (60-75%). HCV-
associated HCCs have been reported as high as 80-
90% in Japan (22). Different mechanisms of
carcinogenesis are associated to HBV and HCV
infections. HBV is a known oncogenic virus, able to
integrate its DNA into the genome of the infected
cells causing direct mutagenesis, and higher rates of
chromosomal abnormalities have been found in
HBV-related HCC (23, 24). HCV virus seems to
cause HCC through an indirect pathway causing
chronic inflammation, cell death, proliferation and
cirrhosis (20). However, HBV virus also seems to
promote liver carcinogenesis through indirect path-
ways by continuous hepatocyte injury, liver regen-

eration and tumour-promoting activities of viral
proteins, like Hbx (20). It is interesting to note that
a recent epidemiological study (25) found an asso-
ciation between a leukemogenic virus infection,
HTLV-1, and an increased risk of HCC (RR=2.1;
95% C.I: 1.0-4.6). Although confounding factors
due to interactions between HCV and HTLV-1
infections has been pointed out as a partial explana-
tion of these data, further studies are warranted to
explore these findings.

Etiology and risk factors for CC are much less
known compared to HCC ones. Some inflammatory
diseases of biliary or gastrointestinal tract are asso-
ciated with an increased risk of CC, notably gall-
stones, chronic ulcerative colitis and primary scle-
rosing cholangitis (PSC) (26, 27). PSC has been
indicated as the most common cause of CC in
Western countries, but since its incidence has not
increased in the last decade it cannot explain the
observed increased incidence of CC (3, 6). In
Eastern Europe and in many Asian countries an
important etiologic factor of CC is infection with
liver flukes (Opistorchis spp., Clonorchis sinensis)
which contaminated raw food, particularly fish (28).
A 1994 WHO estimate reported about 17 million
people globally infected with CC-related liver flukes
(29). HCV infection was also associated with higher
risk of developing ICC in the United States (30), but
still most patients with CC have no identifiable risk
factors for the disease.

Dietary risk factors

Excessive alcohol intake (more than 3 drinks/day
corresponding roughly to 35-40 g ethanol/day) has
been recognized as human carcinogen by IARC in
1988 (31). Ethyl alcohol is a multipotent carcino-
genic agent and has been causally associated not
only to liver cancer, but also to other cancer sites
(oral cavity, pharynx, larynx, esophagus, liver, colo-
rectum and female breast) (32). Ethyl alcohol in
drinking water has also been demonstrated to be
carcinogenic in experimental animals (33).Various
mechanisms seems to act in alcohol-associated
carcinogenesis: chronic inflammation resulting in
oxidative stress, as in steatohepatitis; acetaldehyde
formation (by liver alcohol dehydrogenase and
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cytochrome P4502E1, CYP2E1) and its consequent
mutagenic and carcinogenic effects; induction of
CYP2E1 causing increased reactive oxygen species
(ROS) formation and subsequent lipid peroxidation
and DNA damage; depletion of cellular antioxidant
defense pool (glutathione and alpha-tocopherol);
disturbed methyl group transfer associated with
DNA hypomethylation; decrease retinoic acid in the
liver with induction of AP-1 complex, the latter
being a downstream effector of tumour promoters,
oncogenes and growth factors; and iron overload,
due to increased intestinal uptake and hepatic depo-
sition, promoting ROS formation through the Fenton
reaction (34).

Aflatoxins are known and potent hepatocarcino-
gens in both animals and humans (35). These myco-
toxins are produced by Aspergillus flavus and related
fungi on improperly stored corn, rice and peanuts.
Sub-Saharian and Eastern/Southeastern populations
are highly exposed (2). Little information is avail-
able on correlation between aflatoxins and HCC in
developed countries, but it merits noting that afla-
toxins adducts have been identified in a small
sample of patients in the United States (36). Many
ecological studies performed between the 1960s and
1980s showed aflatoxins induced HCC in exposed
populations (37-39). Many studies in rats have also
demonstrated the carcinogenicity of aflatoxins: a
dose-related increased of hepatomas were firstly
shown by Newberne (40). Hepatocarcinogenicity of
aflatoxins was later confirmed by several studies in
different rodent species and strains (39, 41, 42).
Aflatoxin B1 (AFB1) is the standard reference for
mechanistic studies on aflatoxins carcinogenicity.
AFB1 is metabolically activated in the liver by
cytochrome P450 oxidation, forming  the AFB1 exo-
8,9-epoxide that reacts covalently with DNA and
also with proteins (43). The most frequently
observed mutation induced by metabolically acti-
vated AFB1 is GC→TA transversion. In particular, in
the specific case of AFB1 -induced HCC, a striking
sequence specificity has been observed as most of
the mutations are found in the third position of codon
249 of p53 gene (44). AFB1 reactivity is particularly
strong towards guanine bases although it also
depends on local DNA sequence (45-46). It is also
speculated that the observation of the hotspot muta-
tion site in the p53 gene is due to a selective advan-

tage for growth of already mutated hepatocytes, as it
has been suggested that AFB1 exert a major effect on
late-stage carcinogenesis (46).

Recently, non-alcoholic fatty liver disease
(NAFLD), a metabolic disorder characterized by
steatosis, non-alcoholic steatohepatitis (NASH)
frequently leading to fibrosis and finally evolving in
cirrhosis, has been proposed to increase HCC risk
(47). However, in an experimental model of
NAFLD, mice exposed to particulate matter PM<2.5
µm develop more severe liver inflammation and
fibrosis compared to non exposed mice (48). It is
worth noting that in a series of 105 consecutive
patients in the United States, cryptogenic cirrhosis
accounted for 29% of diagnosed HCC and NAFLD
might underlie 13% of total HCC patients for whom
neither HCV/HBV infections nor heavy alcohol
intake is reported (49). NAFLD is strongly associ-
ated with caloric overconsumption, obesity and
diabetes, the latter of which is found to be a risk
factor for both chronic liver disease and HCC (4,
50).

Concerning CC, few data on dietary risk factors
have been reported. Excess alcohol consumption
was recently found higher in ICC compared to
controls in a case-control study (51). Further experi-
mental and epidemiologic research on food contam-
inants such as additives or pesticides is warranted to
analyse diet influences on CC onset.

Chemical risk factors

An analysis of the data reported by the IARC
monographs on the 108 agents classified as human
carcinogens (class 1) shows that 17 (about 16%) are
causally associated or suspected hepatocarcinogens
(Table 1). Among these, viruses such as HBV, HBC
and HTLV-1 have already been discussed briefly, as
the examples of ethanol in alcoholic beverages and
aflatoxins exposure in contaminated foods.

Different classes of chemicals are reported to
induce HCC in humans: drugs or hormonal therapies
(azathioprine, tamoxifen and estrogen-progesteron
oral contraceptives) (68); radioisotopes or heavy
metals (Plutonium-239, Radium-224, Thorium-232;
arsenic in drinking water) (57, 65); complex
mixtures of PAH and other combustion products
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Table 1 - Chemical, physical and biological agents recognized or suspected as hepatocarcinogens to humans

Agent/mixture/ Type of agent Liver cancer Other cancer sites Data on rodent carcinogenicity References
exposure situation (level of evidence) in humans Liver Other sites

Azathioprine Immunosup- Causally Hematopoietic Not Hematopoietic IARC 
pressant drug associated tissue, skin reported tissue, ear duct Suppl. 7 (52),

Cohen et al
(53)

Estrogen- Hormones Causally Female breast, Causally Mammary IARC
progesteron associated cervix associated gland, Vol 91 (54)
oral uterus
contraceptives

Ethanol in Alcohol Causally Oral cavity, Causally Head IARC 
alcoholic associated pharynx, larynx, associated (osteosarcomas), Vol 96 (32);
beverages esophagus,  neck, mammary Soffritti

colorectum, gland et al (33)
female breast

Hepatitis B Virus Causally Not reported Suspected Not reported IARC
virus associated to be Vol 59 (55)

associateda

Hepatitis C Virus Causally Not reported Not Not reported IARC
virus associated reported Vol 59 (55)

Human Virus Suspected Adult T-cell Not Not reported IARC
T-cell to be leukemia/ reported Vol 67 (56)
lymphotropic associated lymphoma, 
virus type I cervix, vagina 

Plutonium-239 Alpha particle Causally Lung, Causally Lung, bones IARC
emitter associated bone sarcoma associated Vol 78 (57)

Radium-224 Alpha particle Causally Bone sarcoma, Not Bones, IARC
emitter associated female breast, reported hematopoietic Vol 78 (57)

kidney tissue

Thorium-232 Alpha particle Causally Leukemia Causally Bones IARC
emitter associated associated Vol 78 (57)

Tamoxifen Hormone Suspected Endometrium Causally Uterus IARC
agonist/ to be associated Vol 66 (58);
antagonist associated Maltoni

et al (59)

2,3,7,8- Organochlorine Suspected Lung, Causally Thyroid, IARC
tetrachlorodi- to be hematopoietic associated subcunateous Vol 69 (60),
benzo-para- associated tissue, soft and Walker
dioxin tissues sarcomas, hematopoietic et al (61)

all cancers tissue
combined

(continued)
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(soots and tobacco smoking) (52, 67); organochlo-
rines (vinyl chloride monomer: VCM) (62); and
plants (betel or Areca catechu) (64). For many of
these compounds carcinogenicity studies on rodents
anticipated or confirmed specific liver tumour induc-
tion. It is interesting to note that recently also some
psychoactive substances, like cannabinoids, have
been reported to worsen liver steatosis and fibrosis
in presence of HCV infections (69-71). Despite that
no evidence of carcinogenicity has been shown for
delta 9-tetrahydrocannabinol (the principal
psychoactive ingredient in marihuana) in rats and
mice (72), more research is warranted to assess long-
term carcinogenicity effects of cannabinoids, partic-
ularly in the liver, as their assumption during
cannabis smoking may result in cannabinoids expo-
sure for a large population. Moreover, some natural

and synthetic cannabinoids have been recently tested
for therapeutic applications, such as control of
chemotherapy-induced nausea and vomiting in
cancer patients (73, 74), appetite stimulation for
AIDS patients (74), and control of mood disorders
(75). Thus, evaluation of potential cannabinoids
carcinogenicity should be addressed to verify their
safety as drugs.

Estrogen-progesteron oral contraceptives have
been shown to induce liver tumours in women in
many case-control studies (54). Carcinogenicity
studies on rats showed that oral administration of
ethinyl estradiol plus norethisterone to male and
female rats induced increased incidence of liver
adenomas in treated males and HCC in treated
females (54) and that oral administration of
mestranol plus norethisterone induced increased
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Table 1 - (continued)

Agent/mixture/ Type of agent Liver cancer Other cancer sites Data on rodent carcinogenicity References
exposure situation (level of evidence) in humans Liver Other sites

Vinyl chloride organochlorine Causally Suspected brain, Causally Skin, IARC
associated hematopoietic associated mammary gland, Vol. 97 (62)

tissue, melanoma Zymbal gland, 
lung, kidney

Aflatoxins Mycotoxins Causally Not reported Causally Not reported IARC
associated associated Vol. 82 (63)

Betel quid Plant Suspected Oral cavity, Suspected Skin, lung, IARC
with or derivatives to be pharynx, to be stomach Vol. 85 (64)
without tobacco associated esophagus associated

Soots PAH and Causally Esophagus, lung, Not Skin, lung IARC
combustion associated leukemia reported Suppl 7 (52)
products 
mixtures

Arsenic in Heavy metal Suspected Skin, lung, kidney, Causally Skin, lung, IARC
drinking water to be urinary bladder associated urinary Vol. 84 (65),

associated bladder Waalkes
et al (66) 

Tobacco PAH and Causally Oral and nasal Suspected Skin, IARC
smoking and combustion associated cavities, esophagus, to be respiratory Vol. 83 (67)
tobacco smoke products mixtures pharynx, larynx, associated tract, lung

lung, stomach,
pancreas, kidney,
urinary tract, cervix, 
hematopoietic tissue

a results were obtained in transgenic mice expressing pre-S, S and X genes of HBV genome and the relevance of these studies
is not clear
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incidence of liver adenomas in treated male rats (54).
Another study showed that administration of
mestranol plus norethynodrel induced an increased
incidence of AHF in female rats (54). Estrogen-prog-
esteron oral contraceptives carcinogenicity may be
mediated by promotion of the epithelium prolifera-
tion and by the generation of ROS caused by
estrogen reactive metabolites (76).

Human exposure to alpha-particle emitters, in
particular Plutonium-239, Radium-224, Thorium-
232, has been associated to increased incidence of
HCC (57). Recently a 17 month-long study on mice
showed that a short period of exposure to Thorotrast
(Thorium-232 dioxide) increased the incidence of
altered hepatic foci in treated mice (77). A mecha-
nistic explanation is that during their decay
radioisotopes emit alpha particles which have been
shown to induce direct and indirect DNA damage
(78).

Some cases of HCC following tamoxifen treat-
ment in breast cancer patients have been reported
(58, 68). Even though no strong statistical associa-
tion was shown with HCC, clear carcinogenic effects
were shown for endometrial cancers. Interestingly,
in a 2-year carcinogenicity bioassay, oral administra-
tion of tamoxifen to male and female Alderley Park
Wistar derived- rats induced an increased incidence
of liver adenomas and carcinomas in both sexes (79).
Tamoxifen possesses a partial estrogen-agonist
activity in the liver (58). Human hepatic estrogen
receptor (ER) appears to be quantitative and qualita-
tive similar to that of rodents, so tamoxifen-induced
liver tumours in humans and rodents may be due in
part to ER-dependent responses, such as hepatocytes
mitogenesis (80).

VCM induces increased incidences of hepatic
angiosarcomas and hepatocellular carcinomas in
humans, as shown in many studies (62, 81-83).
However, the first evidence of hepatic angiosarcoma
induced by VCM comes from a long-term carcino-
genicity study performed in the early 1970s (84, 85)
and further experiments showed that VCM induced
also HCC and other cancers in rats (85). VCM is
predominantly oxidized by the cytochrome P4502E1
and, following metabolic activation, the two metabo-
lites (chloroethylene oxide and chloroacetaldehyde)
react with nucleic acid bases to form adducts (62).
Furthermore, the molecular pattern of p53 mutations

has been shown to be similar in Sprague-Dawley rat
primary liver tumours (both angiosarcomas and
hepatocellular carcinomas) compared to human liver
cancers (86).

Ecological studies performed in areas where
drinking water was contaminated by various levels
of arsenic (As) have shown increased incidence of
different kind of malignancy in exposed population,
particularly tumours of skin, lung, liver, kidney and
urinary bladder (87-89). In a transplancetal study on
CH3 mice, inorganic As was shown to induce a
dose-related increase in the incidence of HCC in
males (66). Arsenic is genotoxic and induces chro-
mosomal aberrations both in vitro and in vivo (55,
65).

Interestingly, some chemical agents associated
with increased risk for HCC have been reported to be
carcinogenic also for the biliary tract in humans. In
an epidemiological study on chemical workers vinyl
chloride was associated with increased risk of CC
(90). Thorotrast, used as a radiocontrast agent in
1930s, has been reported to be a potent carcinogenic
agent for CC (91). Furthermore, dioxins and
nitrosamines have been associated to increased risk
for CC in humans (92). Importantly 3 different kinds
of dioxins (2,3,7,8- tetrachlorodibenzo-p-dioxin;
3,3´,4,4´,5-pentachlorobiphenyl and 2,3,4,7,8-
pentachlorodibenzofuran) have been recently
demonstrated to induce a dose-related increase in
both HCC and CC incidence in Sprague-Dawley rats
in a 2-year carcinogenicity assay (61).

Many genetic epidemiologic studies have been
conducted to evaluate gene polymorphisms and
gene-environment interactions as risk factors for
HCC, particularly concerning genes coding for
metabolizing enzymes (glutathione-S-transferase,
epoxide hydrolase, cytochrome P4502E1) or DNA
repairing enzymes (XRCC1, UDP-glucuronosyl-
transferase1A7) (93-98). Until now, results from
these studies have reported positive association,
association in a subset of population or negative
association. These results have been attributed to
inadequate sample size to reliably detect likely small
effects of single genes on risk with a background of
strong environmental factors (5). Meta-analysis and
additional studies with larger samples should clarify
the rôle of genetic polymorphisms in the onset of
HCC (5, 99).
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These data clearly indicate that the human liver is
sensitive to chemical-induced carcinogenesis and
that xenobiotic exposure could play an underesti-
mated rôle in inducing primary liver cancers, alone
or in addition to viral and alcoholic etiologies.
Although it is aknowledged that in some rodents,
particularly in mice, the liver is a preferred target
organ for chemical carcinogens (100, 101), it should
not be disregarded that some human hepatocarcino-
gens such as aflatoxins, VCM, oral contraceptives,
tamoxifen have been anticipated as such in rodents
and that molecular events in tumorigenesis appear to
be similar. Even though mouse liver susceptibility to
tumorigenesis is often used as an argument against
the relevance of carcinogenic bioassays for public
health protection, this biological feature should be
considered as a de facto sensitivite biosensor, as
about one third of human carcinogens (IARC group
1) induce HCC in mice (102). Finally, only a small
fraction of the about 100,000 chemical agents
presently commercialized in Europe and United
States have been adequately investigated for their
carcinogenic potential, so the chemical burden for
hepatocarcinogenesis could be greater than actually
estimated (103, 104). 

Long-term carcinogenicity bioassays and detec-
tion of potential human hepatocarcinogens

Long-term carcinogenicity bioassays, particularly
using rats and mice, have been traditionally
employed for detecting the carcinogenic potential of
chemical and physical agents by the two most exten-
sive bioassays programs in the world, the National
Toxicology Program and the Ramazzini Institute
(105-107). Although the etiology of hepatic
neoplasias is different, in particular due to the
absence of chronic hepatitis as a precursor in sponta-
neous HCC in rodents, histologic, cytological and
molecular similarities have been identified between
humans and rodents with respect to liver neoplasia
(107).

In both humans and rodents HCC are frequently
multifocal and show a histologic/cytological spec-
trum from well-differentiated to poorly-differenti-
ated carcinomas (101). Histological patterns of HCC
show various similarities between humans and

rodents, as they may be organized in multicellular
trabeculae, solid mass or gland-like arrangements
(108-111). Furthermore, some histochemical abnor-
malities are shared between rats and humans, such as
decreased activity of ATPase and glucose 6-phos-
phatase and increased activity of gamma-glutamyl-
transpeptidase (112).

One of the suggested pathogenic pathways
involved in development of HCC is the proliferation
of oval cells, considered the stem cells of the adult
liver (113). Oval cell proliferation may lead to the
formation of atypic hepatic foci (AHF), whose
progression towards hepatic neoplasias has been
extensively studied in rodents (114-116). AHF has
also been indicated as a preneoplastic lesion associ-
ated with human HCC development (117).

The molecular pathways involved in the develop-
ment of liver neoplasia are diverse in both humans
and rodents and no universal molecular features
have been found associated with all hepatic tumours
in both species. In humans, alterations in mainly four
different genetic pathways have been identified: the
p53 pathway involved in response to DNA damage;
the retinoblastoma (Rb) pathway involved in cell
cycle control; the TGF-β pathway involved in
growth inhibition; and the Wnt/ β-catenin involved
in signal transduction and cell-cell adhesion (23,
118, 119). Specific p53 mutations, particularly
GC→TA transversions, have been shown after afla-
toxin and VCM exposure both in humans and
rodents HCC, although p53 mutations in HCC are
less frequent in rodents than in humans (86, 120).
Other mutations in the p53 gene have been identified
in humans, but its overall mutation rate is geograph-
ically heterogeneous, ranging from 15% in European
HCC to 40% in Chinese HCC (121, 122). It is worth
noting that hepatoblastomas have been reported to
carry p53 alterations in both children and mice,
although in rodents this is a tumour occurring in
adult animals (123-125). The Rb gene, an onco-
suppressor gene involved in regulation of the G1
phase of the cell cycle and its inactivation, exhibits
either gene mutation or epigenetic alterations in
about 30% of human HCC (23, 126). Epigenetic
silencing through promoter methylation is also
observed in another Rb pathway gene, p16-INK4,
leading to the repression of cyclin D-dependent
kinase inhibitor 2 (CDKN2) and ARF (two tumour
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suppressor proteins), in a wide range of HCC (127).
In a folate/methyl deficiency model, inducing HCC
in rats, methylation of p16 gene promoter has been
found to be an early event in hepatocarcinogenesis,
suggesting that the Rb pathway is shared by human
and rodents in certain conditions and that
folate/methyl deficiency model is a suitable experi-
mental model to study Rb pathway implications in
hepatic multi-stage carcinogenesis, particularly
linked to alterations in DNA methylation (128).
Transforming growth factor β (TGF-β), a peptide
hormone which controls proliferation and induces
apoptosis in hepatocytes, may also play a rôle in
early events during hepatocarcinogenesis in both
humans and rodents (101, 129). Expression of a co-
receptor required for its activation, the mannose-6-
phosphate/insuline-like growth factor 2 (M6P/
IGF2R), has been found decreased in human and
rodent HCC (130, 131). Interestingly, in mice and
rats, the M6P/IGF2R gene is imprinted, meaning
that just one copy is functional. This fact may
partially explain the relatively higher susceptibility
of rodents for chemically-induced liver cancers (107,
131). β-catenin is a protein with a dual function in
cell-cell adhesion and in Wnt signaling that induces
cell proliferation. Point mutations leading to the loss
of phosphorylation sites of β-catenin alter its cellular
degradation, with consequently protein translocation
to the nucleus and transcription of genes, including
c-myc, whose upregulation leads to cell proliferation
(132). β-catenin mutations seems to be an early
event, as they have been found in liver adenomas
and in patients with non-invasive hepatocellular
carcinoma (133, 134). β-catenin mutations have
been also found in chemically-induced mouse HCC,
with immunohistochemical accumulation in prema-
lignant liver lesions, suggesting that Wnt signaling
pathway is an early event in liver carcinogenesis also
in mice alterations and that this pathway may be
sensible to chemical carcinogens (135).

CC is a very rare malignancy in rodents. NTP
historical controls show CC incidence ranges in
Fischer rats from 0-0.1% in males and from 0-0.2%
in females, while in B6C3F1 mice it ranges from 0-
0.7% in males and from 0-2% in females (136).
However, rodent biliary epithelium seems to be
sensible to chemical-induced carcinogenesis, as
shown by recent long-term carcinogenicity studies

on dioxins (61). Moreover an experimental model of
thioacetamide-induced ICC in Sprague-Dawley rats
has been recently developed (137, 138). A patholog-
ical and immunohistochemical study provided
evidence that thioacetamide induces the entire range
of cholangiocarcinogenesis lesions, from dysplasia
to advanced cancerous stage and expression of
Epidermal Growth Factor Receptor (EGFR),
apomucins and matrix metalloproteinases is similar
in human and rat ICC (139).

Although different in etiology, taken together
there are a number of similarities in both hystologic
aspects and cellular and molecular pathogenesis
between humans and rodents concerning the devel-
opment of primary liver neoplasias. Given that the
use of long-term bioassays is a well-established -
and currently the most predictive - tool to detect
chemical and physical carcinogens, it represents the
best experimental surrogate available for detecting
potential human hepatocarcinogens.

Animal models for development of novel liver
cancer biomarkers

HCC screening is proposed for high risk popula-
tions and consists in hepatic ultrasound scanning
coupled with serum α-fetoprotein (AFP) assay (140).
The use of biological markers for early detection of
HCC is currently problematic due to the relatively
poor sensitivity of available markers (119, 141). In
particular, AFP accounts for a sensitivity ranging
from 39% to 64% and a specificity ranging from
76% to 91% (142-143). Moreover, AFP correlates
with tumour size and 80% of HCC with tumour
diameter < 3 cm do not show increase in AFP serum
levels (119, 140, 144). Various serum markers have
been proposed to improve HCC detection, such as
Lens culinaris agglutinin-reactive AFP (AFP-L3);
des-gamma carboxyprothrombin (DCP), α-l-fucosi-
dase (AFU), glycopican 3 (GPC3), squamous cell
carcinoma antigen (SCCA) and Golgi protein 73
(GP73) (141). None of these proteins has shown
enough sensitivity nor specificity to be proposed as
unique biomarker to detect early HCC. Many efforts
have been dedicated and some improvements
obtained by combining two or more of these proteins
(145-149), but currently there is not enough data on
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their diagnostic accuracy to allow for clinical appli-
cation, particularly for early detection of HCC.
However, it is of note that recently a set of six
different serum biomarkers adjusted for age and sex
(α-2 microglobulin, haptoglobulin, γ-glutamyl
transpeptidase, total bilirubin, apolipoprotein A1 and
alanine transferase) has been developed and tested
for non-invasive evaluation of liver fibrosis and
necrosis in patients with HVC infection, with inter-
center reproducibility and with an area under
receiver operating curve (AUROC) of 0.87 (150-
152). Recently, the association of this set of
biomarkers with an ultrasound-based transient elas-
tography has been shown to allow diagnosis and reli-
able grading of liver fibrosis, avoiding liver biopsy in
a significant percentage of patients (153, 154). The
same group proposing the panel of biomarkers for
evaluating liver fibrosis and necrosis has combined
this panel of biomarkers with serum glucose, triglyc-
erides and cholesterol levels and body mass index to
evaluate steatosis, obtaining AUROCs ranging from
0.79 to 0.86 (155), even though a comparison with
Magnetic Resonance Imaging has shown the latter
still being the best method for highly accurate non
invasive measurement of liver steatosis (156).

Recent advances in global genomic and proteomic
approaches could help improve early diagnostic of
primary liver cancers. DNA microarrays allow
simultaneous analysis of thousands of genes and will
probably amplify the discovery of new markers, but
standardization and interpretation difficulties are
currently limiting the use of these methods in clin-
ical practice. Serum proteomics using surface-
enhanced laser desorption/ionization-time of flight
mass spectrometry (SELDI-TOF MS) has been
recently used to develop new HCC biomarkers
(157). A study comparing sensitivity and specificity
of SELDI-TOF MS with AFP, AFP-L3 and DCP
showed higher sensitivity and specificity for the
proteomic analysis (158). There are different strate-
gies for the search of protein biomarkers, including
analysis of pathologic tissue, identification of
tumour antigens that induce autoantibodies directed
against HCC antigens, but the most interesting for
potential early diagnosis is analysis of serum of
other biological fluids. Beretta reports that although
many technical advances have been achieved, some
basic questions remain to be answered, particularly

the lack of information on differences in plasma
proteome in healthy subjects differring for sex and
age and the specific design of studies aimed to detect
early neoplastic lesions which cannot be diagnosed
with available tools (159).

In this context, the use of experimental models of
HCC and CC could provide a valuable platform for
development and validation of new biomarkers. In
particular, the collection of biological fluids is
feasable throughout the life of animals, before and
after they may develop a neoplasia during long-term
carcinogenicity bioassays, notably life-span experi-
ments (106, 160). This approach combines the possi-
bility of both prospective and retrospective analysis
of plasma and urine, allowing the identification of
promising biomarkers for early detection of cancer.
Furthermore, life-span carcinogenicity bioassays
provide access to a larger number of samples (at
least 100 animals/group) compared to clinical
studies, thus reducing the effect of chance in
detecting a potential candidate molecule (161). The
human homologues of the most predictive
biomarkers identified experimentally could be tested
in clinical and population studies, possibly reducing
costs and time of clinical research and increasing
successful identification of useful biomarkers. In
recent years, in vivo imaging methods, such as ultra-
sound, Magnetic Resonance Imaging (MRI),
Computed Tomography (CT) and Positron Emission
Tomography (PET), have improved, allowing high
spatial resolutions, informative metabolic, functional
and molecular information also in laboratory
animals (162, 163). Use of these imagining methods
is rapidly growing in physiopathological and drug
discovery studies in preclinical models. Further-
more, algorithms have been developed that superim-
pose information obtained from different imaging
devices such as CT, PET or MRI, allowing addi-
tional spatial and quantitative data (164). Well-
designed protocols which will integrate proteomic
approach with imaging diagnostics using animal
models of cancer may result in greater improvement
for biomarkers development. 

Many experimental models of preneoplastic and
neoplastic liver lesions are already available in
rodents. Liver fibrosis and cirrhosis can be induced
in rats by treating them with carbon tetrachloride or
phenobarbital or a combination of both, reproducing
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the development of cirrhosis in human livers (165,
166). These models are currently used in testing new
potential antifibrotic agents and they could provide a
valuable model for early detection biomarkers
research since rats, like humans, may develop HCC
in cirrhotic livers (167). Diethylnitrosamine (DEN)
also induces HCC in exposed rats and provides a
widely used model to study mechanisms of hepato-
cellular carcinogenesis (168-170), so it has potential
to be exploited for biomarkers development. Rodent
models of NASH, recently proposed as a risk factor
for HCC (47), are also available. These include
genetic models and diet-induced NASH. Genetic
models such as ob/ob mice (leptin-deficient) or
phosphatase and tensin homolog (PTEN)-deficient
mice, have been shown to be more prone to develop
HCC, thus renforcing the hypothesis that NASH can
represent a precancerous lesion in the liver (171,
172). Diet-induced NASH, like in the case of
methionine-choline deficient feeding in both rats and
mice, are providing valuable results in understanding
biochemical and molecular pathological processes
underlying onset and progression of NASH (173,
174).

As previously described, a chemical-induced
model of CC treating rats with thioacetamide is also
available. Although the capacity of thioacetamide to
induce CC has been known since the mid-1980s
(175), its use to study mechanisms of CC tumorige-
nesis and drug discovery is quite recent (137, 176).
This model opens new possibilities to explore
markers for CC, for which early detection could
improve clinical and surgical management of the
disease and possibly survival.

Conclusions

Primary liver cancers, particularly HCC and CC,
are an increasing public health problem in both
developed and developing countries (1, 2). Although
viral and alcoholic etiologies seem to account for
most HCC, recent evidence show that an increasing
fraction of HCC arise in people having no recognized
risk factors (5, 49). Furthermore, the recent increase
in the incidence of CC is likely to be of environ-
mental origin, as other known risk factors do not
appear to have increased in the last decade (6). Long-

term carcinogenicity bioassays on rodents are the
best available tool to study the carcinogenic potential
of chemical and physical agents and provide a unique
resource to improve primary prevention of cancer in
general and also of liver cancers (106, 107, 160). The
fact that some rodents, particularly mice, have a
higher susceptibility for developping HCC should not
be considered as a shortcoming in long-term carcino-
genicity studies, but rather as an available sensitive
biosensor for detecting carcinogenic potential.
Furthermore, animal models are now available to
develop and validate early detection or exposure
biomarkers for liver neoplasia or hepatocarcinogens.
More research and well-designed protocols are
needed to integrate long-term carcinogenicity bioas-
says and exposure/early detection biomarkers
research in order to decrease the global burden of
cancer incidence and mortality. 
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