
Introduction

Idiopathic pulmonary fibrosis (IPF) is a pro-
gressive fibrotic interstitial lung disease associated
with a decline in lung function that increasingly re-
stricts routine physical activity of the patient and has
a median survival of 2-5 years from diagnosis (1, 2).
It has long been assumed that the pathogenesis of
IPF involves a process of chronic repair that results
from persistent pulmonary inflammation with atten-
dant activation of inflammatory cells, cytokines and
growth factors capable of activating mesenchymal
cells, with enhanced matrix production and deposi-
tion leading to fibrosis (3). However, the majority of

IPF patients show little or no evidence of ongoing
inflammation, raising questions as to whether IPF is
truly associated with chronic inflammation.

While the mechanisms that result in IPF are
still not fully understood, there is a strong suggestion
of the involvement of alveolar epithelial cell death
and alveolar collapse in the pathogenesis of usual in-
terstitial pneumonia (UIP) (4, 5). Research over the
past 10 years suggests that IPF may be an intrinsic
fibroproliferative disorder involving an aberrant
wound healing cascade where ongoing epithelial cell
damage and/or activation results in abnormal mes-
enchymal cell activation, derivation of myofibrob-
lasts, and excess matrix deposition (Figure 1) (3).
The current paradigm of the pathophysiology of IPF
has therefore shifted from a chronic inflammatory
process towards alveolar epithelial cell dysfunction
and disordered fibroproliferation being centre stage
(3-8).

Inflammation and dysregulated fibroblast proliferation – new
mechanisms?
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Alveolar epithelial cells

Alveolar epithelial cells (AEC) type II play a
central role in regulating the fluid balance in the lung
by the synthesis, secretion, and recycling of surfac-
tant, thereby reducing surface tension and allowing
alveolar ventilation, perfusion and gas exchange at
normal transpulmonary pressures (9-12). The sur-
factant proteins SP-B and SP-C, and phospholipid
dipalmitoylated phosphatidylcholine are key compo-
nents of surfactant (12, 13). AEC type II also pro-
duce compounds of the innate immune defense sys-
tem, such as defensins, collectins (of which the SP-
A and SP-D are notable) and lysozyme, which con-
tribute towards the prevention of infection. SP-A
and SP-D, for example, bind to the surface of vari-
ous pathogens facilitating their removal by alveolar
macrophages (14-19).

AEC type II also have stem-cell-like or progen-
itor cell self-renewal characteristics and have a high

proliferative potential (20-22) for trans-differentiat-
ing into AEC type I (22).Mutations in the genes for
surfactant proteins SP-A and SP-C appear to be as-
sociated with an increased susceptibility of chronic
AEC type II cell injury and apoptosis in familial
forms of IPF and nonspecific interstitial pneumonia
(23-28). More than 30 different mutations of SP-C
have been reported to date (29). Abnormal telomere
shortening in AEC types I and II is also associated
with the development of IPF, suggesting that early
exhaustion of the regenerative properties of the alve-
olar stem cell pool may contribute to the progressive
fibrogenesis seen in IPF lungs (30).

Fibroblasts and matrix deposition

Fibrosis is a pathobiological process common to
many human diseases and is characterised by the
progressive replacement of normal tissue with a col-

Fig. 1. Pathogenesis of IPF (3)
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lagen-rich extracellular matrix (31, 32). Myofibrob-
lasts in IPF originate from trans-differentiation of
interstitial fibroblasts, from AEC via epithelial mes-
enchymal transition, or from bone-marrow derived
circulating progenitor cells, the fibrocytes (33, 34).
Fibroblasts and activated myofibroblasts accumulate
as small clusters (fibroblastic foci) in subepithelial
areas (33, 34). The overlying epithelium consists of
hyperplastic pneumocytes or columnar non-ciliated
bronchiolar cells. These mesenchymal cells secrete
excessive amounts of extracellular matrix molecules,
primarily fibrillar collagens, but also many different
proteoglycans and glycoprotein, resulting in exten-
sive structural disorganisation of the lung microenvi-
ronment with loss of alveolar-capillary units with the
development of scarring and cysts (honeycombing)
(32).

The resulting tissue remodelling culminates in
increased tissue mechanical stiffness (35-37). Rela-
tively recent observations have highlighted the fact
that variations in matrix stiffness can potently alter
fibroblast morphology, proliferation, synthetic func-
tion, responsiveness to growth factor signalling (e.g.
transforming growth factor-beta [TGF-β]) and my-
ofibroblast activation (38-43). Thus, rather than
simply an outcome of fibrosis, stiffening of the me-
chanical environment may directly affect cellular be-
haviours that promote, amplify, and perpetuate fi-
brosis in an autocrine activation loop (44).

Growth factors

Not only inflammatory cells but also aberrantly
activated AEC type II and interstitial mesenchymal
cells can produce many of the cytokines and growth
factors responsible for migration and proliferation of
local fibroblasts and their transition to myofibrob-
lasts. Much attention has focused on the role that
soluble inflammatory and fibrogenic mediators play
in the initiation and progression of fibrosis (45).
Whilst numerous, key factors include the pleiotrop-
ic growth factor TGF-β1, platelet derived growth
factor (PDGF), vascular endothelial growth factor
(VEGF), fibroblast growth factor (FGF), and inter-
leukin (IL)-13 (45-47). Integrins such as αvβ6 are
able to activate latent, matrix-bound TGF-β and
thereby enhance profibrotic elements in the tissue
even without synthesis of new molecules (48). TGF-

β1 is expressed at low or undetectable levels in nor-
mal lungs but is upregulated within AEC in IPF. In
fibroblasts isolated from patients with IPF, TGF-β1
promotes many of the pathogenic mechanisms of fi-
brosis and remodelling, such as enhanced collagen
synthesis, extracellular matrix deposition and fibrob-
last to myofibroblast differentiation (45, 49). The
lack of growth inhibition and delayed apoptosis
showed by fibrotic cells might be also related to a
modified response to tumour necrosis factor-alpha
(TNF-α) due to a reduced expression of TNF re-
ceptor 1, known to mediate growth inhibition and
resistance to apoptosis (50).

Several matrix metalloproteases (MMPs) are
upregulated in the lungs of IPF patients and have
been shown to actively participate in the pathogene-
sis of the disease through extracellular matrix re-
modelling and basement membrane disruption (51,
52). MMPs can also break down molecules that me-
diate cell-cell and cell-extracellular matrix interac-
tions, and can activate growth factors and growth
factor receptors indicating that they likely contribute
to other local biological processes such as apoptosis,
migration, proliferation and angiogenesis (51).

Implications for treatment

Advances in the understanding of the patho-
genetic processes involved in the development of
IPF have led to novel therapeutic targets. An in-
creasing number of compounds currently in preclin-
ical and clinical development aim at these novel “fi-
brotic” mechanisms, as opposed to the more tradi-
tionally used anti-inflammatory strategies that have
largely failed for IPF therapy (53). Pirfenidone, an
orally administered pyridone derivative (5-methyl-
1-phenyl-2-[1H]-pyridone), is the first anti-fibrot-
ic agent to be approved for clinical use in the treat-
ment of IPF (54). Its exact biological mechanisms
are still unknown, but it has a number of properties
that give it an attractive anti-fibrotic drug profile.
Pirfenidone is an anti-inflammatory and anti-oxi-
dant agent that inhibits TGF-β and TNF-α in
vitro, both having a likely role in IPF progression
(54, 55). Pirfenidone acts as an anti-fibrotic by al-
tering the expression, synthesis, and accumulation
of collagen, and inhibiting the recruitment, prolifer-
ation and possibly expression of the extracellular
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matrix-producing cells, as shown in a variety of an-
imal models (56).

Receptor tyrosine kinases are another potential
therapeutic target for IPF. Several signalling path-
ways activated by these tyrosine kinase receptors are
involved in lung fibrosis (57-59) and inhibition of
specific receptors may slow the progression of IPF
(47, 59-62). BIBF 1120 is a potent intracellular ty-
rosine kinase inhibitor that is in clinical develop-
ment (phase III) for the treatment of IPF and a
number of types of cancer. Its targets include
platelet-derived growth factor receptors (PDGFR)
α and β, vascular endothelial growth factor receptors
(VEGFR) 1, 2, and 3, and fibroblast growth factor
receptors (FGFR) 1, 2, and 3 (59, 63).

Another compound under investigation for IPF
is serum amyloid P (SAP), a member of the pen-
traxin family of proteins. SAP interferes with
bleomycin-induced lung fibrosis through inhibition
of downstream TGF-β1 effects, and alters fibroblast
apoptosis, tissue inflammation, pulmonary fibrocyte
accumulation and collagen deposition, but does not
affect levels of TGF-β1 themselves. SAP also ap-
pears to influence pulmonary macrophages and in-
crease the anti-fibrotic chemokines IP10/CXCL10
in a SMAD 3-independent manner, which may con-
tribute to its pronounced anti-fibrotic effects. Inter-
estingly, circulating SAP concentrations are reduced
in IPF patients (64).

A further potential target in fibrotic disorders is
the NADPH oxidase (NOX) family of enzymes.
NOX4, for example, catalyses the reduction of O2 to
form reactive oxygen species (ROS) and is upregulat-
ed in IPF lungs. NOX4-dependent generation of hy-
drogen peroxide (H2O2) is required for TGF-β1-in-
duced myofibroblast differentiation, extracellular ma-
trix production, and contractility. Initial proof-of-
concept studies in two different murine models of
lung injury have suggested that genetic or pharmaco-
logic targeting of NOX4 abrogates fibrogenesis (65).

Collagen crosslinking is yet another important
mechanism that is enhanced in IPF lungs and con-
tributes to matrix accumulation and rigidity. Partic-
ular attention is currently on the lysyl oxidases and
especially LOXL2, for which neutralising antibodies
have been developed and shown excellent preclinical
efficacy in animal models (66). The clinical useful-
ness of this compound in currently investigated in a
large trial in IPF.

Discussion

Over the past 10 years, substantial advances
have been made in the understanding of the patho-
physiology of IPF. As new pathogenic pathways and
mediators are discovered, new therapies in develop-
ment are targeting the fibroblastic process and ab-
normal tissue remodelling, excessive extracellular
matrix accumulation, and angiogenesis more direct-
ly. While it is likely that any effective treatment
strategy for IPF will need to target more than one
of the pro-fibrotic pathways associated with its
complex pathogenesis, only one agent has been ap-
proved to date worldwide. Although the mecha-
nisms underlying this disease remain poorly under-
stood, the advances that have been made provide
momentum for the discovery and development of
additional and/or alternative effective treatment
modalities.
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