
Iron deficiency anemia and glucose metabolism
Ashraf T. Soliman1, Vincenzo De Sanctis2, Mohamed Yassin3, Nada Soliman4

1 Department of Pediatrics, Alexandria University Children Hospital, Elchatby, Alexandria, Egypt; 2 Pediatric and Adolescent 
Outpatient Clinic, Quisisana Hospital, Ferrara, Italy;3 Department of Hematology, Hamad Medical Center, Doha, Qatar;  
4 Primary Health Care, Ministry of Health, Alexandria, Egypt

Summary. Iron deficiency anemia (IDA) is a global public health problem affecting both developing and 
developed countries with major consequences for human health as well as social and economic development. 
It occurs at all stages of the life cycle, but is more prevalent in pregnant women and young children. IDA ap-
pears to be more common in diabetic patients compared to non-diabetic population. Iron deficiency (ID) and 
IDA can impair glucose homeostasis in animals and human and may negatively affect glycemic control and 
predispose to more complications in diabetic patients. On the other hand diabetes and its complications are 
associated with anemia and its correction improves diabetes control and may prevent or delay the occurrence 
of complications. Physicians treating this form of anemia should be aware of its negative effect on glycemic 
control in normal and diabetic patients (both type 1 and type 2). They should prevent ID and treat early all 
those with IDA.This brief review aims to enlighten the different effects of IDA on glucose metabolism in 
normal and diabetic patients. (www.actabiomedica.it)
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Introduction

Iron deficiency (ID) and iron deficiency anemia 
(IDA) are prevalent forms of nutritional deficiency. 
Globally, 50% of anemia is attributed to iron deficien-
cy. Reduced iron stores have been linked to increased 
glycation of hemoglobin A1C (HbA1c) (1-3). In ad-
dition, the prevalence of IDA is considerably signifi-
cant in patients with type 2 diabetes mellitus espe-
cially those with nephropathy. The clinical relevance of 
the effect of iron deficiency on glucose metabolism is 
still not clear. The links between glucose, anemia and 
HbA1c are complex and not yet fully elucidated. Dia-
betes can contribute to anemia through reducing ab-
sorption of iron, gastrointestinal bleeding and through 
diabetic complications that cause anemia (1-3).

Studying the effect of ID and IDA on glucose 
metabolism in experimental animals and in human 

subjects revealed some important consequences of 
both on glucose levels, HbA1c and insulin secretion. 
In addition, some of the possible mechanisms that me-
diate these effects have been investigated. 

The present review focuses on the current knowl-
edge on the different effects of IDA on glucose me-
tabolism in normal and diabetic patients.

Animal studies

In animal models, responses to ID include al-
terations in glucose and lipid metabolism. ID animals 
display signs of disrupted metabolic homeostasis, in-
cluding alterations in insulin signaling, as evidenced by 
hyperglycemia, hyperinsulinemia, and hyperlipidemia. 
Decreased oxidative capacity leads to a shift in prefer-
ential fuel utilization from fat to glucose (4-7).
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Some studies measured serum glucose concentra-
tions in ID animals using a laboratory animal diet in 
which the primary carbohydrate source was sucrose 
and using formula (AIN-93) with a major change be-
ing the substitution of cornstarch for sucrose.  These 
studies reported elevated serum glucose levels in se-
verely iron-deficient (hemoglobin <60 g/L) rodents 
fed on both diets. However, the lipid abnormalities 
(increased triglyceride) occurred in the rats fed AIN-
76A diets. The mechanisms contributing to these met-
abolic responses were not the primary focus of these 
investigations (4-9). 

The metabolic response to ID is correlated to the 
severity of these consequences (hyperglycemia and hy-
perlipidemia) and appeared to be a graded response 
associated with a reduction in hemoglobin. However, 
less severe reductions in hemoglobin are not as highly 
correlated with hyperglycemia and hyperlipidemia. 

These findings suggest a certain threshold exists 
in order to develop these potentially negative meta-
bolic consequences (9-12). 

However, in other studies, even a moderate in-
duction of iron deficiency appears to contribute to is 
sufficient to disrupt normal glucose homeostasis in ro-
dents and to elevations in both steady-state levels of 
serum glucose and insulin regardless of basal diet for-
mulation. This relative hyperglycemia was associated 
with a relative hyperinsulinemia in the ID animals. 

Hyperglycemia was associated with a relative de-
crease in cortisol in the ID groups signifying that high 
cortisol secretion (secondary to the stress of anemia) is 
not responsible for the presence of hyperglycemia (10, 
11-15).  

On the other hand, Márquez-Ibarra A et al. (16) 
showed that low levels of dietary iron reduced levels of 
serum triglycerides, hemoglobin, and cholesterol, and 
significantly improved insulin, and glucose tolerance 
in healthy rats. 

Gene expression regulating glucose homeostasis
during ID 

Some studies examined the hepatic expression of 
genes involved in maintenance of glucose homeosta-
sis during ID. These studies have shown that dietary 

intervention(s) tend to elicit biologically meaningful, 
transcriptional responses. The ID rats in each group 
showed significant alterations in the expression of 
genes representative of glucose metabolism (16). 

Distinguished changes in gene expression include 
those genes associated with metabolic pathways in-
cluding both glycolysis and gluconeogenesis. 

The significant increase in the glucokinase (Gck) 
expression is likely due to the relative increase in cir-
culating insulin levels observed in the ID groups, as 
insulin is a known inducer of hepatic Gck mRNA ex-
pression. Increased expression of Gck could potential-
ly be very important as ID animals have been shown 
to have an increased reliance on glucose as a metabolic 
substrate, and Gck is able to rapidly increase the rate 
of glucose phosphorylation in the liver in response to 
the elevations in blood glucose levels. Furthermore, as 
Gck catalyzes the first step in hepatic glucose utili-
zation it can contribute multiple pathways including 
glycogen synthesis, glycolysis, and de novo lipogenesis 
which could explain the enhanced glucose utilization 
and hyperlipidemia reported in response to dietary ID 
(16, 17-22).

Previous observations suggest that alterations in 
metabolic gene expression are indicative of an impaired 
hepatic insulin response wherein ID animals exhibited 
a form of mixed insulin resistance. Chronic hyperin-
sulinemia may contribute to a combination of hepatic 
insulin resistance in which the insulin-dependent ac-
tivation of lipogenic gene expression remains intact, 
but gluconeogenic gene expression is inadequately re-
pressed. In this model of mixed insulin resistance, in-
sulin acts through the mammalian target of rapamycin 
complex 1 to activate lipogenesis via a sterol regula-
tory element (SRE) -binding protein)-1c-dependent 
increase in lipogenic gene expression, whereas insulin-
induced phosphorylation of the transcription factor 
forkhead box protein O1 is diminished such that glu-
coneogenic gene expression remains inappropriately 
active. Thus, mixed insulin resistance remains a candi-
date mechanism explaining the relative hyperglycemia 
and hyperlipidemia reported in ID animals (23-28).

OhiraY et al. (29) revealed that ID led to upregu-
lated expression of genes encoding gluconeogenic en-
zymes as well as increased serum glucose levels. Glucose 
6-phosphatase (G6Pase) and phosphoenolpyruvate 
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carboxykinase 1 (Pck1) were among the upregulated 
genes involved in carboxylic acid metabolic processes. 
These genes encode the rate-limiting enzymes for glu-
coneogenesis. In addition, serum insulin levels also in-
creased . This increase is consistent with a report that 
under hypoxic conditions in iron-deficient rats with 
lactate accumulation which activates gluconeogenesis. 
Despite changes in hepatic insulin signaling, peripher-
al tissue insulin sensitivity as assessed by glucose clear-
ance appears to be enhanced with ID (30-31).

Human studies 

Iron deficiency remains the most common mi-
cronutrient deficiency in the world. Symptoms of ID 
include weakness, fatigue, impaired immune function, 
and reduced cognitive function in children. Serum fer-
ritin is the storage form of iron, and it reflects the iron 
status fairly accurately. 

An earlier study showed that reduced iron stores 
have a link with increased glycation of hemoglobin 
A1C (HbA1c), leading to false-high values of HbA1c 
in non-diabetic individuals. HbA1c is the most pre-
dominant fraction of HbA1, and it is formed by the 
glycation of terminal valine at the β-chain of hemo-
globin. It reflects the patient’s glycemic status over pre-
vious three months. HbA1c is widely used as a screen-
ing test for diabetes mellitus, and American Diabetes 
Association has recently endorsed HbA1c ≥6.5% as 
a diagnostic criterion for diabetes mellitus (32-36). 
Some studies investigated the relation between ID 
and IDA and changes in blood glucose concentration, 
HbA1c level and insulin secretion. 

1. Non-diabetic patients with ID

Ozdemir A et al. (37) evaluated the effects of cor-
rection of ID anemia (from Hb: 9.9 ± 1.8 g/dL to Hb: 
13.1 ± 1 g/dL) on insulin secretion in 54 non-diabetic 
premenopausal women with IDA. A statistically sig-
nificant decreases were found in fasting insulin levels 
and homeostatic model assessment (HOMA) scores 
following correction of anemia in women <40 years 
and normal body mass index (BMI <27 kg/m2) but not 
in older patients >40 years or those with high BMI 
(>27 kg/m2). Post-treatment fasting insulin levels were 
positively correlated both with post-treatment hemo-
globin levels. 

Kim C et al. (35) studied 913 women who had 
ID and 266 patients with IDA. Anemia was defined 
as hemoglobin <13.5 g/dl in men and <12.0 g/dl in 
women. Among women, iron deficiency was associ-
ated with a greater odds of HbA1c ≥5.5% (odds ra-
tio 1.39; 95% CI 1.11-1.73) after adjustment for age, 
race/ethnicity, and waist circumference but not with a 
greater odds of HbA1c ≥6.5% (0.79; range 0.33-1.85). 
Brooks et al. (34) measured HbA1c values in 35 non-
diabetic patients with IDA before and after treatment 
with iron. They significantly observed elevated HbA1c 
values in IDA patients before treatment with signifi-
cantly decreased levels after treatment with iron. 

Gram-Hansen et al.(38) showed normal HbA1c 
concentrations in iron deficiency, which dropped to 
subnormal levels after iron supplementation. 

Coban E et al. (39) studied 50 non-diabetic pa-
tients (30 women, 20 men, mean age 35.7 ± 11.9 years) 
with IDA and 50 healthy controls. All patients with 
IDA were treated with iron 100 mg/day for 3 months. 

Table 1. Summary of tissue changes in gene expression in response to iron deficiency in rats 

Upregulated genes Downregulated genes Increased changes in serum Decreased changes in liver or serum

Lipogenesis (SREBF1) B-oxidation (FASN,CPT1A) Glucose Triglycerides
- liver and muscle in liver and muscle Pyruvate Cholesterol ( serum and liver)
 Lactate (serum) 

Glycolysis (PFKL) - Ketogenesis  Insulin Cortisol
liver and muscle (HMGCS2) 

Gluconeogenesis (PDK4) TCA cycle (ACO20) 
- liver in liver and muscle  
 Gluconeogenesis (PDK4) 
 muscle 
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Before iron treatment, the mean HbA1c 7.4 ± 0.8% 
level in patients with IDA( Hb:10.8 ± 1.2 g/dL) was 
higher than in a healthy group (5.9% ± 0.5) (Hb: 13.6 
± 0.9 g/dL) (p<0.001). In patients with IDA, HbA1c 
decreased significantly after iron treatment to 6.2% ± 
0.6 (p<0.001), when Hb raised to 12.7 ± 0.97 g/dL). 

Rafat D et al. (40) studied 30 pregnant non-dia-
betic women with IDA before and after 3 months of 
iron therapy. In their patients, anemia was defined as 
Hb levels <12 g/dl in males and <11 g/dl in females. 
They reported significant decrease of HbA1C after 
iron supplementation and observed significant cor-
relation between erythrocyte indices, iron metabolic 
indices and HbA1c. 

 Hashimoto et al. (2) demonstrated that the 
HbA1c, but not serum glycated albumin, is elevated 
in late pregnancy in 47 nondiabetic pregnant women 
not receiving iron supplementation, mean corpuscular 
hemoglobin (MCH) decreased from 29.9 ± 1.8 pg to 
28.7 ± 2.7 pg, due to iron deficiency. Their Hb A1C 
levels showed a negative correlation with mean cor-
puscular hemoglobin (MCH), serum transferrin satu-
ration, and serum ferritin.

Koga M et al. (3) reported that in 180 premeno-
pausal women with normal glucose tolerance, hemo-
globin, mean corpuscular volume (MCV) and MCH 
showed a negative association with HbA1c. 

Bhardwaj et al. (41) reported that the mean base-
line HbA1c level in anaemic patients (Hb: 6.8 g/dl) 
(Hb A1c: 6.6 %) was higher than that of non anemic 
controls (Hb: 13.2 g/dl) (HbA1c: 5.4%). However, 
after 3 months of treatment, a significant decline of 
HbA1C (from 6.6 to 5.7%) with the rise of Hb (12.2 
g/dL)was recorded.

2. ID and IDA and glycemic control in patients with Type
2 DM

Christy et al.(1) found a positive correlation be-
tween IDA (patients with Hb: = 9.4 ± 1.3 g/dL) and 
increased A1C levels, especially in the controlled dia-
betic women and individuals having FPG between 
100-126 mg/dl. 

In addition, investigations performed on diabetic 
chronic kidney disease patients, and diabetic pregnant 
women showed increased HbA1c levels in iron defi-

ciency anemia (Hb ≤10.5 g/dl), which was reduced 
following iron therapy and improvement of Hb level 
(42-45).

Anemia in diabetic patient appears to have a re-
markable unfavorable effect on quality of life and is 
associated with disease progression and the develop-
ment of co-morbidities. Reduced hemoglobin (Hb) 
levels, even to a limited degree, can identify patients 
at increased risk of progressive renal disease. Although 
anemia is clearly associated with both micro- and 
macrovascular complications in patients with type 1 
diabetes, it remains to be established what role anemia 
may have in the development or progression of these 
complications (45-48). There is a direct relationship 
between anemia and diabetic kidney disease, A num-
ber of studies , including the reduction on endpoints in 
non-insulin-dependent diabetes mellitus (NIDDM) 
with angiotensin II antagonist losartan (RENAAL) 
trial, have suggested that reduced Hb levels, even 
within the normal range, identify patients with NID-
DM at increased risk for progressive renal disease (44). 

Anemia may play a direct role in this process 
through direct mitogenic and fibrogenic effects on 
the kidney and the heart, associated with expression 
of growth factors, hormones, and vasoactive reagents, 
many of which are also implicated in the diabetic mi-
crovascular disease. Anemia is also correlated with oxi-
dative stress, because erythrocytes represent a major 
antioxidant component of the blood (44-48). 

IDA is associated with oxidative stress and func-
tionally deficient high-density lipoproteins (HDL) 
particles. Women with IDA have higher triglycerides 
and cholesteryl ester transfer protein (CETP) activity 
and lower HDL-C than controls (p<0.001). Arylester-
ase activity of paraoxonase-1(PON-1) was significant-
ly lower in IDA patients than controls (-16%, p<0.05). 
The intravenous administration of iron was associated 
with a decrease in malondialdehyde levels and an in-
crease in arylesterase activity of PON-1 (-22% and 
+18%, respectively, p<0.05).(48,49)

3. Diabetes effect on anemia

The elevation of proinflammatory cytokines plays 
an essential role in insulin resistance and induces the 
appearance of cardiovascular complications diabetic 
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micro- and macrovascular, kidney disease and ane-
mia. By increasing especially IL-6. IL6 decreases the 
sensitivity of progenitors to erythropoietin (erythroid 
growth factor) and promotes apoptosis of immature 
erythrocytes. During the development of diabetes 
mellitus, nephropathy may arise, which further under-
mines the renal production of erythropoietin, positive-
ly contributing to an deterioration of anemia. Accord-
ing to Escorcio et al. approximately 40% of diabetic 
patients are affected by kidney diseases. The decreased 
renal function and proinflammatory cytokines are the 
most important factors in determining reduction of 
hemoglobin levels in those patients. Moreover, the 
inflammatory situation created by kidney disease also 
interferes with intestinal iron absorption and mobili-
zation of iron . Therefore, diabetic patients with kidney 
disease have the highest risk for developing anemia.
(50-54)

4. IDA and glycemic control in patients with Type 1 DM

Tarim et al. (55) performed a prospective study 
including 37 patients with type 1 diabetes (11 patients 
were ID and the remaining 26 were iron sufficient). 
Patients with ID had higher levels of HbA1c than pa-
tients without iron deficiency. After iron supplementa-
tion for three months, these patients showed a signifi-
cant decrease in HbA1c levels. In patients with Type 1 
DM, HbA1c decreased from a mean of 10.1 ± 2.7% to 
a mean of 8.2 ± 3.1% (P<0.05). Additionally, HbA1c 
in ID non-diabetic patients decreased from a mean of 
7.6 ± 2.6% to 6.2 ± 1.4% after iron therapy (P<0.05).

In support with this finding, El-Agouza et al.(56) 
studied 47 students with IDA (Hb <12 g/dl). After 
treatment with oral iron for 20 weeks their HbA1c 
significantly decreased from 6.2 ± 0.6% to 5.3 ± 0.5 % . 

In conclusion 

These studies thus suggest that among non-dia-
betic and diabetic individuals IDA is associated with 
higher concentrations of HbA1c. 

Iron replacement therapy decreases HbA1c in 
both diabetic and non-diabetic individuals. This im-
plies that the iron states must be considered during the 

interpretation of HbA1c concentrations in dia-
betic or non-diabetic patients. Early diagnosis and 
treatment of ID in diabetic patients can improve their 
glycemic control and may prevent or delay complica-
tions. 
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